70 research outputs found

    Observed and modeled Greenland ice sheet snow accumulation, 1958-2003, and links with regional climate forcing

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 344–358, doi:10.1175/JCLI3615.1.Annual and monthly snow accumulation for the Greenland Ice Sheet was derived from ECMWF forecasts [mainly 40-yr ECMWR Re-Analysis (ERA-40)] and further meteorological modeling. Modeled accumulation was validated using 58 ice core accumulation datasets across the ice sheet and was found to be 95% of the observed accumulation on average, with a mean correlation of 0.53 between modeled and observed. Many of the ice core datasets are new and are presented here for the first time. Central and northern interior parts of the ice sheet were found to be 10%–30% too dry in ERA-40, in line with earlier ECMWF analysis, although too much (>50% locally) snow accumulation was modeled for interior southern parts of Greenland. Nevertheless, 47 of 58 sites show significant correlation in temporal variability of modeled with observed accumulation. The model also captures the absolute amount of snow accumulation at several sites, most notably Das1 and Das2 in southeast Greenland. Mean modeled accumulation over the ice sheet was 0.279 (standard deviation 0.034) m yr−1 for 1958–2003 with no significant trend for either the ice sheet or any of the core sites. Unusually high accumulation in southeast Greenland in 2002/03 leads the authors to study meteorological synoptic forcing patterns and comment on the prospect of enhanced climate variability leading to more such events as a result of global warming. There is good agreement between precipitation measured at coastal meteorological stations in southern Greenland and accumulation modeled for adjacent regions of the ice sheet. There is no significant persistent relation between the North Atlantic Oscillation index and whole or southern Greenland accumulation.JM acknowledges support from NASA’s Cryospheric Sciences Program and the Arctic Section of NSF’s Office of Polar Programs

    Competing magnetostructural phases in a semiclassical system

    Get PDF
    The interplay between charge, structure, and magnetism gives rise to rich phase diagrams in complex materials with exotic properties emerging when phases compete. Molecule-based materials are particularly advantageous in this regard due to their low energy scales, flexible lattices, and chemical tunability. Here, we bring together high pressure Raman scattering, modeling, and first principles calculations to reveal the pressure-temperature-magnetic field phase diagram of Mn[N(CN)2]2. We uncover how hidden soft modes involving octahedral rotations drive two pressure-induced transitions triggering the low ??? high magnetic anisotropy crossover and a unique reorientation of exchange planes. These magnetostructural transitions and their mechanisms highlight the importance of spin-lattice interactions in establishing phases with novel magnetic properties in Mn(II)-containing systems

    Validation of Epidermal AMBRA1 and Loricrin (AMBLor) as a prognostic biomarker for non-ulcerated AJCC stage I/II cutaneous melanoma

    Get PDF
    Background: Combined expression of the autophagy-regulatory protein AMBRA1 (activating molecule in Beclin1-regulated autophagy) and the terminal differentiation marker loricrin in the peritumoral epidermis of stage I melanomas can identify tumour subsets at low risk of metastasis. Objectives: To validate the combined expression of peritumoral AMBRA1 and loricrin (AMBLor) as a prognostic biomarker able to identify both stage I and II melanomas at low risk of tumour recurrence. Methods: Automated immunohistochemistry was used to analyse peritumoral AMBRA1 and loricrin expression in geographically distinct discovery (n = 540) and validation (n = 300) cohorts of nonulcerated American Joint Committee on Cancer (AJCC) stage I and II melanomas. AMBLor status was correlated with clinical outcomes in the discovery and validation cohorts separately and combined. Results: Analysis of AMBLor in the discovery cohort revealed a recurrence-free survival (RFS) rate of 95.5% in the AMBLor low-risk group vs. 81.7% in the AMBLor at-risk group (multivariate log-rank, P < 0.001) and a negative predictive value (NPV) of 96.0%. In the validation cohort, AMBLor analysis revealed a RFS rate of 97.6% in the AMBLor low-risk group vs. 78.3% in the at-risk group (multivariate log-rank, P < 0.001) and a NPV of 97.6%. In a multivariate model considering AMBLor, Breslow thickness, age and sex, analysis of the combined discovery and validation cohorts showed that the estimated effect of AMBLor was statistically significant ,with a hazard ratio of 3.469 (95% confidence interval 1.403–8.580, P = 0.007) and an overall NPV of 96.5%. Conclusions These data provide further evidence validating AMBLor as a prognostic biomarker to identify nonulcerated AJCC stage I and II melanoma tumours at low risk of disease recurrence

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    The PrairieDog: a double-barrel coring drill for ‘hand’ augering

    No full text

    The SideWinder for powering a hand-coring auger in drilling and lifting

    No full text

    An interactive and immersive human–computer interface for rapid composite part production design

    Get PDF
    This article addresses the need for better retention and exploitation of tacit knowledge for intelligent computer-aided design. It presents an automated design framework for the development of individual part forming tools for a composite stiffener incorporating parametrically developed design geometries. This work develops existing principles in knowledge-based engineering and parametric modelling beyond product design in the manufacturing planning domain. Outcomes demonstrate chronological benefits of automated process design methods as well as learning enhancements as the tacit knowledge data set can now include an applied element through an auto-generated virtual build environment. A virtual environment presenting a design concept to the planner for interactive assembly assessment was generated in twenty seconds and enabled the completion of virtual builds in support of the development of an optimal forming tool arrangement. This principle enables the addition of an experiential tacit knowledge feedback loop to further improve assembly planning for design concepts as they evolve. Challenges still exist in determining the level of reality required to provide an effective learning environment in the virtual world. Full representation of physical phenomena such as gravity, part clashes and the representation of standard build functions require further work to represent real physical phenomena robustly. </jats:p
    corecore