165 research outputs found
Multibeam Maser Survey of methanol and excited OH in the Magellanic clouds: new detections and maser abundance estimates
‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.12888.xPeer reviewe
Tracing pebble drift and trapping using radial carbon depletion profiles in protoplanetary disks
Stars and planetary systemsLaboratory astrophysics and astrochemistr
JWST detects neon line variability in a protoplanetary disk
Stars and planetary system
Hydrostatic equilibrium does not solve the C18O flux problem in protoplanetary disks
Stars and planetary systemsLaboratory astrophysics and astrochemistr
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio
Is the evidence for dark energy secure?
Several kinds of astronomical observations, interpreted in the framework of
the standard Friedmann-Robertson-Walker cosmology, have indicated that our
universe is dominated by a Cosmological Constant. The dimming of distant Type
Ia supernovae suggests that the expansion rate is accelerating, as if driven by
vacuum energy, and this has been indirectly substantiated through studies of
angular anisotropies in the cosmic microwave background (CMB) and of spatial
correlations in the large-scale structure (LSS) of galaxies. However there is
no compelling direct evidence yet for (the dynamical effects of) dark energy.
The precision CMB data can be equally well fitted without dark energy if the
spectrum of primordial density fluctuations is not quite scale-free and if the
Hubble constant is lower globally than its locally measured value. The LSS data
can also be satisfactorily fitted if there is a small component of hot dark
matter, as would be provided by neutrinos of mass 0.5 eV. Although such an
Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the
position of the `baryon acoustic oscillation' peak in the autocorrelation
function of galaxies, it may be possible to do so e.g. in an inhomogeneous
Lemaitre-Tolman-Bondi cosmology where we are located in a void which is
expanding faster than the average. Such alternatives may seem contrived but
this must be weighed against our lack of any fundamental understanding of the
inferred tiny energy scale of the dark energy. It may well be an artifact of an
oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General
Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references
reformatted in journal style - text unchange
Case Report: Rare IKZF1 Gene Fusions Identified in Neonate with Congenital KMT2A-Rearranged Acute Lymphoblastic Leukemia
Published: 19 January 2023Chromosomal rearrangements involving the KMT2A gene occur frequently in acute lymphoblastic leukaemia (ALL). KMT2A-rearranged ALL (KMT2Ar ALL) has poor long-term survival rates and is the most common ALL subtype in infants less than 1 year of age. KMT2Ar ALL frequently occurs with additional chromosomal abnormalities including disruption of the IKZF1 gene, usually by exon deletion. Typically, KMT2Ar ALL in infants is accompanied by a limited number of cooperative le-sions. Here we report a case of aggressive infant KMT2Ar ALL harbouring additional rare IKZF1 gene fusions. Comprehensive genomic and transcriptomic analyses were performed on sequential samples. This report highlights the genomic complexity of this particular disease and describes the novel gene fusions IKZF1::TUT1 and KDM2A::IKZF1.Laura N. Eadie, Jacqueline A. Rehn, James Breen, Michael P. Osborn, Sophie Jessop, Charlotte E. J. Downes, Susan L. Heatley, Barbara J. McClure, David T. Yeung, Tamas Revesz, Benjamin Saxon and Deborah L. Whit
- …