541 research outputs found
Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations
We use the zero-temperature random-field Ising model to study hysteretic
behavior at first-order phase transitions. Sweeping the external field through
zero, the model exhibits hysteresis, the return-point memory effect, and
avalanche fluctuations. There is a critical value of disorder at which a jump
in the magnetization (corresponding to an infinite avalanche) first occurs. We
study the universal behavior at this critical point using mean-field theory,
and also present preliminary results of numerical simulations in three
dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions
We present numerical simulations of avalanches and critical phenomena
associated with hysteresis loops, modeled using the zero-temperature
random-field Ising model. We study the transition between smooth hysteresis
loops and loops with a sharp jump in the magnetization, as the disorder in our
model is decreased. In a large region near the critical point, we find scaling
and critical phenomena, which are well described by the results of an epsilon
expansion about six dimensions. We present the results of simulations in 3, 4,
and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced
Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'
On the Spiral Structure of the Milky Way Galaxy
We consider the possible pattern of the overall spiral structure of the
Galaxy, using data on the distribution of neutral (atomic), molecular, and
ionized hydrogen, on the base of the hypothesis of the spiral structure being
symmetric, i.e. the assumption that spiral arms are translated into each other
for a rotation around the galactic center by 180{\deg} (a two-arm pattern) or
by 90{\deg} (a four-arm pattern). We demonstrate that, for the inner region,
the observations are best represented with a four-arm scheme of the spiral
pattern, associated with all-Galaxy spiral density waves. The basic position is
that of the Carina arm, reliably determined from distances to HII regions and
from HI and H2 radial velocities. This pattern is continued in the quadrants
III and IV with weak outer HI arms; from their morphology, the Galaxy should be
considered an asymmetric multi-arm spiral. The kneed shape of the outer arms
that consist of straight segments can indicate that these arms are transient
formations that appeared due to a gravitational instability in the gas disk.
The distances between HI superclouds in the two arms that are the brightest in
neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two
values, permitting to assume the presence of a regular magnetic field in these
arms.Comment: 21 pages, 14 fugures; accepted for publication in Astronomichesky
Journal (Astron. Rep.
The Interstellar Environment of our Galaxy
We review the current knowledge and understanding of the interstellar medium
of our galaxy. We first present each of the three basic constituents - ordinary
matter, cosmic rays, and magnetic fields - of the interstellar medium, laying
emphasis on their physical and chemical properties inferred from a broad range
of observations. We then position the different interstellar constituents, both
with respect to each other and with respect to stars, within the general
galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene
The chapter generalizes results on influence of uniaxial strain and
adsorption on the electron states and charge transport or localization in
graphene with different configurations of imperfections (point defects):
resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing
molecules or functional groups, vacancies or substitutional atoms, charged
impurity atoms or molecules, and distortions. To observe electronic properties
of graphene-admolecules system, we applied electron paramagnetic resonance
technique in a broad temperature range for graphene oxides as a good basis for
understanding the electrotransport properties of other active carbons. Applied
technique allowed observation of possible metal-insulator transition and
sorption pumping effect as well as discussion of results in relation to the
granular metal model. The electronic and transport properties are calculated
within the framework of the tight-binding model along with the Kubo-Greenwood
quantum-mechanical formalism. Depending on electron density and type of the
sites, the conductivity for correlated and ordered adsorbates is found to be
enhanced in dozens of times as compared to the cases of their random
distribution. In case of the uniaxially strained graphene, the presence of
point defects counteracts against or contributes to the band-gap opening
according to their configurations. The band-gap behaviour is found to be
nonmonotonic with strain in case of a simultaneous action of defect ordering
and zigzag deformation. The amount of localized charge carriers (spins) is
found to be correlated with the content of adsorbed centres responsible for the
formation of potential barriers and, in turn, for the localization effects.
Physical and chemical states of graphene edges, especially at a uniaxial strain
along one of them, play a crucial role in electrical transport phenomena in
graphene-based materials.Comment: 16 pages, 10 figure
Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach
We study the zero temperature random field Ising model as a model for noise
and avalanches in hysteretic systems. Tuning the amount of disorder in the
system, we find an ordinary critical point with avalanches on all length
scales. Using a mapping to the pure Ising model, we Borel sum the
expansion to for the correlation length exponent. We sketch a
new method for directly calculating avalanche exponents, which we perform to
. Numerical exponents in 3, 4, and 5 dimensions are in good
agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be
obtained from the references quoted in their respective figure captions, the
remaining 19 figures are supplied separately in uuencoded forma
Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy
In this letter we describe the observation of a magnetic field dependent
electronic gap, suggestive of local superconductivity, in the point-contact
spectrum of micro-crystalline graphite. Magnetic field dependent point-contact
spectroscopy was carried out at a temperature of using an
etched aluminium tip. At zero field a gap structure in the differential
conductance is observed, showing a gap of . On
applying magnetic fields of up to , this gap gradually
closes, following the theoretical prediction by Ginzburg and Landau for a fully
flux-penetrated superconductor. By applying BCS-theory, we infer a critical
superconducting temperature of
Availability and quality of emergency obstetric care in Gambia's main referral hospital: women-users' testimonies
<p>Abstract</p> <p>Background</p> <p>Reduction of maternal mortality ratio by two-thirds by 2015 is an international development goal with unrestricted access to high quality emergency obstetric care services promoted towards the attainment of that goal. The objective of this qualitative study was to assess the availability and quality of emergency obstetric care services in Gambia's main referral hospital.</p> <p>Methods</p> <p>From weekend admissions a group of 30 women treated for different acute obstetric conditions including five main diagnostic groups: hemorrhage, hypertensive disorders, dystocia, sepsis and anemia were purposively selected. In-depth interviews with the women were carried out at their homes within two weeks of discharge.</p> <p>Results</p> <p>Substantial difficulties in obtaining emergency obstetric care were uncovered. Health system inadequacies including lack of blood for transfusion, shortage of essential medicines especially antihypertensive drugs considerably hindered timely and adequate treatment for obstetric emergencies. Such inadequacies also inflated the treatment costs to between 5 and 18 times more than standard fees. Blood transfusion and hypertensive treatment were associated with the largest costs.</p> <p>Conclusion</p> <p>The deficiencies in the availability of life-saving interventions identified are manifestations of inadequate funding for maternal health services. Substantial increase in funding for maternal health services is therefore warranted towards effective implementation of emergency obstetric care package in The Gambia.</p
- …