38 research outputs found
Noise-Induced Linearisation and Delinearisation
It is demonstrated, by means of analogue electronic simulation and
theoretically, that external noise can markedly change the character of the
response of a nonlinear system to a low-frequency periodic field. In general,
noise of sufficient intensity {\it linearises} the response. For certain
parameter ranges in particular cases, however, an increase in the noise
intensity can sometime have the opposite effect and is shown to {\it
delinearise} the response. The physical origins of these contrary behaviours
are discussed.Comment: 17 pages. No special macros. Figures on reques
Recommended from our members
Calorimetric observation of single He2* excimers in a 100 mK He bath
We report the first calorimetric detection of individual He2* excimers within a bath of superfluid 4He. The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of 1 eV, immersed directly in the helium bath. He2* excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection (and discrimination) of both states: in the singlet case the calorimeter records the absorption of a prompt 15 eV photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the 15 eV, released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization
Information storing by biomagnetites
Since the discovery of the presence of biogenic magnetites in living
organisms, there have been speculations on the role that these biomagnetites
play in cellular processes. It seems that the formation of biomagnetite
crystals is a universal phenomenon and not an exception in living cells. Many
experimental facts show that features of organic and inorganic processes could
be indistinguishable at nanoscale levels. Living cells are quantum "devices"
rather than simple electronic devices utilizing only the charge of conduction
electrons. In our opinion, due to their unusual biophysical properties, special
biomagnetites must have a biological function in living cells in general and in
the brain in particular. In this paper we advance a hypothesis that while
biomagnetites are developed jointly with organic molecules and cellular
electromagnetic fields in cells, they can record information about the Earth's
magnetic vector potential of the entire flight in migratory birds.Comment: 17 pages, 3 figure
Dynamic importance sampling for the escape problem in nonequilibrium systems: Observation of shifts in optimal paths
The activation problem is investigated in two-dimensional nonequilibrium systems. A numerical approach based on dynamic importance sampling (DIMS) is introduced. DIMS accelerates the simulations and allows the investigation to access noise intensities that were previously forbidden. The escape path is observed to be shifted compared to a heteroclinic trajectory calculated in the limit of zero-noise intensity. A theory to account for such shifts is presented and shown to agree with the simulations for a wide range of noise intensities
Dynamics importance sampling for the collection of switching events in vertical-cavity surface-emitting lasers
A numerical approach based on dynamic importance sampling (DIMS) is applied to investigate polarization switches in vertical-cavity surface-emitting lasers. A polarization switch is described as an activation process in a two-dimensional nonequilibrium system. DIMS accelerates the simulations and allows access to noise intensities that were previously forbidden, revealing qualitative changes in the shape of the transition paths with noise intensity
Fluctuational escape and related phenomena in nonlinear optical systems
In this chapter the authors discuss the application of simulation techniques to the study of fluctuational escape and related phenomena in nonliner optical systems: that is, situations where a large deviation of the system from an equilibrium state occurs under the influence of relatively weak noise present in the system. The authors are interested primarily in the analysis of situations where large deviations lead to new nontrivial behaviour or to a transition to a different state
ANALOG STOCHASTIC QUANTIZATION FOR A ONE-DIMENSIONAL BINARY ALLOY
The technique of analog stochastic quantization (ASQ), originally introduced in relation to the quantum harmonic oscillator, is applied to a more complicated quantum system: namely, a one-dimensional binary alloy. The results from an electronic analog simulator are compared with those obtained from numerical solutions of the Schrodinger equation, with which they are shown to be in agreement. It is argued on this basis that the ASQ technique can in principle be applied to one-dimensional quantum systems with arbitrary potentials