4,457 research outputs found

    Progress in GaAs/CuInSe2 tandem junction solar cells

    Get PDF
    Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications

    Genomic comparison of diverse Salmonella serovars isolated from swine.

    Get PDF
    Food animals act as a reservoir for many foodborne pathogens. Salmonella enterica is one of the leading pathogens that cause food borne illness in a broad host range including animals and humans. They can also be associated with a single host species or a subset of hosts, due to genetic factors associated with colonization and infection. Adult swine are often asymptomatic carriers of a broad range of Salmonella servoars and can act as an important reservoir of infections for humans. In order to understand the genetic variations among different Salmonella serovars, Whole Genome Sequences (WGS) of fourteen Salmonella serovars from swine products were analyzed. More than 75% of the genes were part of the core genome in each isolate and the higher fraction of gene assign to different functional categories in dispensable genes indicated that these genes acquired for better adaptability and diversity. High concordance (97%) was detected between phenotypically confirmed antibiotic resistances and identified antibiotic resistance genes from WGS. The resistance determinants were mainly located on mobile genetic elements (MGE) on plasmids or integrated into the chromosome. Most of known and putative virulence genes were part of the core genome, but a small fraction were detected on MGE. Predicted integrated phage were highly diverse and many harbored virulence, metal resistance, or antibiotic resistance genes. CRISPR (Clustered regularly interspaced short palindromic repeats) patterns revealed the common ancestry or infection history among Salmonella serovars. Overall genomic analysis revealed a great deal of diversity among Salmonella serovars due to acquired genes that enable them to thrive and survive during infection

    Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime

    Get PDF
    The focusing of atoms interacting with both far-detuned and resonant standing wave fields in the thin lens regime is considered. The thin lens approximation is discussed quantitatively from a quantum perspective. Exact quantum expressions for the Fourier components of the density (that include all spherical aberration) are used to study the focusing numerically. The following lens parameters and density profiles are calculated as functions of the pulsed field area θ\theta : the position of the focal plane, peak atomic density, atomic density pattern at the focus, focal spot size, depth of focus, and background density. The lens parameters are compared to asymptotic, analytical results derived from a scalar diffraction theory for which spherical aberration is small but non-negligible (θ1\theta \gg 1). Within the diffraction theory analytical expressions show that the focused atoms in the far detuned case have an approximately constant background density 0.5(10.635θ1/2)0.5(1-0.635\theta ^{- 1/2}) while the peak density behaves as % 3.83\theta ^{1/2}, the focal distance or time as θ1(1+1.27θ1/2)\theta ^{-1}(1+1.27\theta ^{- 1/2}), the focal spot size as 0.744θ3/40.744\theta ^{-3/4}, and the depth of focus as 1.91θ3/21.91\theta ^{- 3/2}. Focusing by the resonant standing wave field leads to a new effect, a Rabi- like oscillation of the atom density. For the far-detuned lens, chromatic aberration is studied with the exact Fourier results. Similarly, the degradation of the focus that results from angular divergence in beams or thermal velocity distributions in traps is studied quantitatively with the exact Fourier method and understood analytically using the asymptotic results. Overall, we show that strong thin lens focusing is possible with modest laser powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure

    Pseudorehearsal in value function approximation

    Full text link
    Catastrophic forgetting is of special importance in reinforcement learning, as the data distribution is generally non-stationary over time. We study and compare several pseudorehearsal approaches for Q-learning with function approximation in a pole balancing task. We have found that pseudorehearsal seems to assist learning even in such very simple problems, given proper initialization of the rehearsal parameters

    Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection

    Get PDF
    Interferometric gravitational wave detectors are expected to be limited by shot noise at some frequencies. We experimentally demonstrate that a power recycled Michelson with squeezed light injected into the dark port can overcome this limit. An improvement in the signal-to-noise ratio of 2.3dB is measured and locked stably for long periods of time. The configuration, control and signal readout of our experiment are compatible with current gravitational wave detector designs. We consider the application of our system to long baseline interferometer designs such as LIGO.Comment: 4 pages 4 figure

    Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

    Full text link
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and 10810^{-8} Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.Comment: 5 pages, 1 figure, presented at Amaldi7, Sydney (July 2007

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell

    Full text link
    The erbium atomic system is a promising candidate for an atomic Bose-Einstein condensate of atoms with a non-vanishing orbital angular momentum (L0L \neq 0) of the electronic ground state. In this paper we report on the frequency stabilization of a blue external cavity diode laser system on the 400.91 nmnm laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy is applied within a hollow cathode discharge tube to the corresponding electronic transition of several of the erbium isotopes. Using the technique of frequency modulation spectroscopy, a zero-crossing error signal is produced to lock the diode laser frequency on the atomic erbium resonance. The latter is taken as a reference laser to which a second main laser system, used for laser cooling of atomic erbium, is frequency stabilized
    corecore