1,395 research outputs found

    Clock Quantum Monte Carlo: an imaginary-time method for real-time quantum dynamics

    Full text link
    In quantum information theory, there is an explicit mapping between general unitary dynamics and Hermitian ground state eigenvalue problems known as the Feynman-Kitaev Clock. A prominent family of methods for the study of quantum ground states are quantum Monte Carlo methods, and recently the full configuration interaction quantum Monte Carlo (FCIQMC) method has demonstrated great promise for practical systems. We combine the Feynman-Kitaev Clock with FCIQMC to formulate a new technique for the study of quantum dynamics problems. Numerical examples using quantum circuits are provided as well as a technique to further mitigate the sign problem through time-dependent basis rotations. Moreover, this method allows one to combine the parallelism of Monte Carlo techniques with the locality of time to yield an effective parallel-in-time simulation technique

    The Extraterritorial Implications of the SEC\u27s New Rule Change to Regulate Hedge Funds

    Get PDF

    Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources

    Full text link
    Proposals for near-term experiments in quantum chemistry on quantum computers leverage the ability to target a subset of degrees of freedom containing the essential quantum behavior, sometimes called the active space. This approximation allows one to treat more difficult problems using fewer qubits and lower gate depths than would otherwise be possible. However, while this approximation captures many important qualitative features, it may leave the results wanting in terms of absolute accuracy (basis error) of the representation. In traditional approaches, increasing this accuracy requires increasing the number of qubits and an appropriate increase in circuit depth as well. Here we introduce a technique requiring no additional qubits or circuit depth that is able to remove much of this approximation in favor of additional measurements. The technique is constructed and analyzed theoretically, and some numerical proof of concept calculations are shown. As an example, we show how to achieve the accuracy of a 20 qubit representation using only 4 qubits and a modest number of additional measurements for a simple hydrogen molecule. We close with an outlook on the impact this technique may have on both near-term and fault-tolerant quantum simulations

    Water mass census in the Nordic seas using climatological and observational data sets

    Get PDF
    We have compared and evaluated the water mass census in the Greenlend-Iceland-Norwegian (GIN) Sea area from climatologies, observational data sets and model output. The four climatologies evaluated were: the 1998 and 2001 versions of theWorld Ocean Atlas (WOA98, WOA01), and the United States Navy’s GDEM90 (Generalized Digital Environmental Model) and MODAS01 (Modular Ocean Data Assimilation System) climatologies. Three observational data sets were examined: the multidecadal (1965-1995) set contained on the National Oceanographic Data Center’s (NODC) WOD98 (World Ocean Data) CD-ROM, and two seasonal data sets extracted from observations taken on six cruises by the SACLANT Research Center (SACLANTCEN) of NATO/Italy between 1986-1989. The model data is extracted from a global model run at 1/3 degree resolution for the years 1983-1997, using the POP (Parallel Ocean Program) model of the Los Alamos National Laboratory. The census computations focused on the Norwegian Sea, in the southern part of the GIN Sea, between 10◦W-10◦E and 60◦N-70◦N, especially for comparisons with the hydrocasts and the model. Cases of such evaluation computations included: a) “short term” comparisons with quasi-synoptic CTD surveys carried out over a 4-year period in the southeastern GIN Sea; b) “climatological” comparisons utilizing all available casts from the WOD98 CD-ROM, with four climatologies; and c) a comparison between the WOA01 climatology and the POP model output ending in 1997. In this region in the spring, the fraction of ocean water that has salinity above 34.85 is ∼ 94%, and that has temperatures above 0◦C is ∼ 33%. Three principal water masses dominated the census: the Atlantic water AW, the deep water DW and an intermediate water mass defined as Lower Arctic Intermediate Water (LAIW). Besides these classes, both the climatologies and the observations exhibited the significant presence of deep water masses with T-S characteristics that do not fall into the “named” varieties, e.g., Norwegian Sea or Greenland Sea deep water (NSDW, GSDW). The seasonal volumetric changes for the Atlantic (AW), intermediate (LAIW) and deep waters (DW) in the GIN Sea are in reasonably good agreement between the climatologies, and with the results of hydrographic census surveys. Typical seasonal changes (spring-summer) involve about 30 × 103 km3 of AW increase and 33 × 103 km3 of LAIW decrease, and a decrease of about 32 × 103 km3 of DW between spring and autumn

    Urinary naphthalene and phenanthrene as biomarkers of occupational exposure to polycyclic aromatic hydrocarbons.

    Get PDF
    OBJECTIVES: The study investigated the utility of unmetabolised naphthalene (Nap) and phenanthrene (Phe) in urine as surrogates for exposures to mixtures of polycyclic aromatic hydrocarbons (PAHs). METHODS: The report included workers exposed to diesel exhausts (low PAH exposure level, n = 39) as well as those exposed to emissions from asphalt (medium PAH exposure level, n = 26) and coke ovens (high PAH exposure level, n = 28). Levels of Nap and Phe were measured in urine from each subject using head space-solid phase microextraction and gas chromatography-mass spectrometry. Published levels of airborne Nap, Phe and other PAHs in the coke-producing and aluminium industries were also investigated. RESULTS: In post-shift urine, the highest estimated geometric mean concentrations of Nap and Phe were observed in coke-oven workers (Nap: 2490 ng/l; Phe: 975 ng/l), followed by asphalt workers (Nap: 71.5 ng/l; Phe: 54.3 ng/l), and by diesel-exposed workers (Nap: 17.7 ng/l; Phe: 3.60 ng/l). After subtracting logged background levels of Nap and Phe from the logged post-shift levels of these PAHs in urine, the resulting values (referred to as ln(adjNap) and ln(adjPhe), respectively) were significantly correlated in each group of workers (0.71 < or = Pearson r < or = 0.89), suggesting a common exposure source in each case. Surprisingly, multiple linear regression analysis of ln(adjNap) on ln(adjPhe) showed no significant effect of the source of exposure (coke ovens, asphalt and diesel exhaust) and further suggested that the ratio of urinary Nap/Phe (in natural scale) decreased with increasing exposure levels. These results were corroborated with published data for airborne Nap and Phe in the coke-producing and aluminium industries. The published air measurements also indicated that Nap and Phe levels were proportional to the levels of all combined PAHs in those industries. CONCLUSION: Levels of Nap and Phe in urine reflect airborne exposures to these compounds and are promising surrogates for occupational exposures to PAH mixtures
    corecore