717 research outputs found
Abdominal functional electrical stimulation to enhance mechanical insufflation-exsufflation
Context:
Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increased demand for secretion removal, suggesting AFES may aid secretion clearance. Clinically, secretion clearance is commonly achieved by using Mechanical insufflation-exsufflation (MI-E) to simulate a cough. In this study the feasibility of combining AFES with MI-E is evaluated.
Findings:
AFES was successfully combined with MI-E at eight fortnightly assessment sessions conducted with one sub-acute participant with tetraplegia. By using the signal from a pressure sensor, integrated with the MI-E device, AFES was correctly applied in synchrony with MI-E with an accuracy of 96.7%. Acute increases in exhaled volume and peak flow were observed during AFES assisted MI-E, compared to MI-E alone, at six of eight assessment sessions.
Conclusion:
The successful integration of AFES with MI-E at eight assessment sessions demonstrates the feasibility of this technique. The acute increases in respiratory function observed at the majority of assessment sessions generate the hypothesis that AFES assisted MI-E may be more effective for secretion clearance than MI-E alone
Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study
Background
Severe impairment of the major respiratory muscles resulting from tetraplegia reduces respiratory function, causing many people with tetraplegia to require mechanical ventilation during the acute stage of injury. Abdominal Functional Electrical Stimulation (AFES) can improve respiratory function in non-ventilated patients with sub-acute and chronic tetraplegia. The aim of this study was to investigate the clinical feasibility of using an AFES training program to improve respiratory function and assist ventilator weaning in acute tetraplegia.<p></p>
Methods
AFES was applied for between 20 and 40 minutes per day, five times per week on four alternate weeks, with 10 acute ventilator dependent tetraplegic participants. Each participant was matched retrospectively with a ventilator dependent tetraplegic control, based on injury level, age and sex. Tidal Volume (VT) and Vital Capacity (VC) were measured weekly, with weaning progress compared to the controls.<p></p>
Results
Compliance to training sessions was 96.7%. Stimulated VT was significantly greater than unstimulated VT. VT and VC increased throughout the study, with mean VC increasing significantly (VT: 6.2 mL/kg to 7.8 mL/kg VC: 12.6 mL/kg to 18.7 mL/kg). Intervention participants weaned from mechanical ventilation on average 11 (sd: ± 23) days faster than their matched controls.<p></p>
Conclusion
The results of this study indicate that AFES is a clinically feasible technique for acute ventilator dependent tetraplegic patients and that this intervention may improve respiratory function and enable faster weaning from mechanical ventilation.<p></p>
Cow-Calf Production Response to Pasture Forage Species
To study cow-calf production on fragile soils, 32 ‘tester’ cow-calf pairs were grazed on fertilized and unfertilized meadow brome (Bromus biebersteinii Roem & Schult.) and alfalfa (Medicago sativa L.)/meadow brome pastures, to determine the effects of forage type and fertility on pasture yield and botanical composition; and on animal productivity including cow milk production, cow and calf average daily gain and total gain (per head and per hectare). Cow fertility may be depressed on alfalfa-based pastures, therefore, blood urea nitrogen (BUN) levels were also examined. Cow average daily gain (0.15 kg d-1) and milk production (4.82 kg d-1) were not affected by pasture type or fertility level. However, calf average daily gain was 11% higher when calves were grazed on legume- vs.grass-based pastures (1.20 vs. 1.08 kg d-1; P=0.01). Blood urea nitrogen levels were at the top of the normal range for cows grazing alfalfa-based pastures (7.79-8.09 mmol L-1), but were within the normal range (3.53-5.01 mmol L-1) for cows grazing grass-based pastures
The association of self-efficacy, anxiety sensitivity, and perfectionism with statistics and math anxiety
Statistics and math anxiety are pervasive problems for post-secondary students. We hypothesized that self-efficacy would be negatively related to math/statistics anxiety, and that anxiety sensitivity and perfectionism would be positively related to math/statistics anxiety, even when controlling for gender, university program, and education level. Method: Graduate and undergraduate students (N = 447, after exclusions) completed an online self-report questionnaire, including an abbreviated version of the Statistics Anxiety Rating Scale (STARS), math anxiety, self-efficacy, anxiety sensitivity, perfectionism, and demographics. Results: Exploratory factor analysis supported a six-factor structure for statistics anxiety. Self-efficacy was negatively associated with math/statistics anxiety, whereas anxiety sensitivity and perfectionism were positively associated with math/statistics anxiety. Relationships ranged from small-to-moderate, and most relationships persisted after adding covariates. Discussion: Our study suggests the feasibility of a short-form version of the STARS. Moreover, it provides important information on how personality is associated with domain-specific anxiety that can impede statistics education
Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis
Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI.
Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI.
Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline.
Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique
Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought
In 2000-03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these condition
TFG Promotes Organization of Transitional ER and Efficient Collagen Secretion
Collagen is the most abundant protein in the animal kingdom. It is of fundamental importance during development for cell differentiation and tissue morphogenesis as well as in pathological processes such as fibrosis and cancer cell migration. However, our understanding of the mechanisms of procollagen secretion remains limited. Here, we show that TFG organizes transitional ER (tER) and ER exit sites (ERESs) into larger structures. Depletion of TFG results in dispersion of tER elements that remain associated with individual ER-Golgi intermediate compartments (ERGICs) as largely functional ERESs. We show that TFG is not required for the transport and packaging of small soluble cargoes but is necessary for the export of procollagen from the ER. Our work therefore suggests a key relationship between the structure and function of ERESs and a central role for TFG in optimizing COPII assembly for procollagen export.Medical Research Council UK/MR/J000604/1Medical Research Council UK/MR/K018019/1Medical Research Council UK/MR/G080184
- …