77 research outputs found

    Reduction of trimethylamine N-oxide to trimethylamine by the human gut microbiota: supporting evidence for ‘metabolic retroversion’

    Get PDF
    Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier

    The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys

    Get PDF
    Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)

    Magnetic resonance enterography compared with ultrasonography in newly diagnosed and relapsing Crohn's disease patients: the METRIC diagnostic accuracy study

    Get PDF
    Magnetic resonance enterography and enteric ultrasonography are used to image Crohn's disease patients. Their diagnostic accuracy for presence, extent and activity of enteric Crohn's disease was compared. To compare diagnostic accuracy, observer variability, acceptability, diagnostic impact and cost-effectiveness of magnetic resonance enterography and ultrasonography in newly diagnosed or relapsing Crohn's disease. Prospective multicentre cohort study. Eight NHS hospitals. Consecutive participants aged ≥ 16 years, newly diagnosed with Crohn's disease or with established Crohn's disease and suspected relapse. Magnetic resonance enterography and ultrasonography. The primary outcome was per-participant sensitivity difference between magnetic resonance enterography and ultrasonography for small bowel Crohn's disease extent. Secondary outcomes included sensitivity and specificity for small bowel Crohn's disease and colonic Crohn's disease extent, and sensitivity and specificity for small bowel Crohn's disease and colonic Crohn's disease presence; identification of active disease; interobserver variation; participant acceptability; diagnostic impact; and cost-effectiveness. Out of the 518 participants assessed, 335 entered the trial, with 51 excluded, giving a final cohort of 284 (133 and 151 in new diagnosis and suspected relapse cohorts, respectively). Across the whole cohort, for small bowel Crohn's disease extent, magnetic resonance enterography sensitivity [80%, 95% confidence interval (CI) 72% to 86%] was significantly greater than ultrasonography sensitivity (70%, 95% CI 62% to 78%), with a 10% difference (95% CI 1% to 18%;  = 0.027). For small bowel Crohn's disease extent, magnetic resonance enterography specificity (95%, 95% CI 85% to 98%) was significantly greater than ultrasonography specificity (81%, 95% CI 64% to 91%), with a 14% difference (95% CI 1% to 27%). For small bowel Crohn's disease presence, magnetic resonance enterography sensitivity (97%, 95% CI 91% to 99%) was significantly greater than ultrasonography sensitivity (92%, 95% CI 84% to 96%), with a 5% difference (95% CI 1% to 9%). For small bowel Crohn's disease presence, magnetic resonance enterography specificity was 96% (95% CI 86% to 99%) and ultrasonography specificity was 84% (95% CI 65% to 94%), with a 12% difference (95% CI 0% to 25%). Test sensitivities for small bowel Crohn's disease presence and extent were similar in the two cohorts. For colonic Crohn's disease presence in newly diagnosed participants, ultrasonography sensitivity (67%, 95% CI 49% to 81%) was significantly greater than magnetic resonance enterography sensitivity (47%, 95% CI 31% to 64%), with a 20% difference (95% CI 1% to 39%). For active small bowel Crohn's disease, magnetic resonance enterography sensitivity (96%, 95% CI 92% to 99%) was significantly greater than ultrasonography sensitivity (90%, 95% CI 82% to 95%), with a 6% difference (95% CI 2% to 11%). There was some disagreement between readers for both tests. A total of 88% of participants rated magnetic resonance enterography as very or fairly acceptable, which is significantly lower than the percentage (99%) of participants who did so for ultrasonography. Therapeutic decisions based on magnetic resonance enterography alone and ultrasonography alone agreed with the final decision in 122 out of 158 (77%) cases and 124 out of 158 (78%) cases, respectively. There were no differences in costs or quality-adjusted life-years between tests. Magnetic resonance enterography and ultrasonography scans were interpreted by practitioners blinded to clinical data (but not participant cohort), which does not reflect use in clinical practice. Magnetic resonance enterography has higher accuracy for detecting the presence, extent and activity of small bowel Crohn's disease than ultrasonography does. Both tests have variable interobserver agreement and are broadly acceptable to participants, although ultrasonography produces less participant burden. Diagnostic impact and cost-effectiveness are similar. Recommendations for future work include investigation of the comparative utility of magnetic resonance enterography and ultrasonography for treatment response assessment and investigation of non-specific abdominal symptoms to confirm or refute Crohn's disease. Current Controlled Trials ISRCTN03982913. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in ; Vol. 23, No. 42. See the NIHR Journals Library website for further project information

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample

    Genus IV. Mobiluncus

    No full text
    • …
    corecore