23,794 research outputs found

    Space telescope phase B definition study. Volume 2A: Science instruments, astrometer

    Get PDF
    The analysis and design of an astrometer instrument for the space telescope are discussed. The design concepts utilize the astrometric multiplexing area scanner and the OTA fine guidance sensor

    Topological Quantum Field Theory and Seiberg-Witten Monopoles

    Get PDF
    A topological quantum field theory is introduced which reproduces the Seiberg-Witten invariants of four-manifolds. Dimensional reduction of this topological field theory leads to a new one in three dimensions. Its partition function yields a three-manifold invariant, which can be regarded as the Seiberg-Witten version of Casson's invariant. A Geometrical interpretation of the three dimensional quantum field theory is also given.Comment: 15 pages, Latex file, no figure

    The experience of enchantment in human-computer interaction

    Get PDF
    Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p

    Interdisciplinary research on the application of ERTS-1 data to the regional land use planning process

    Get PDF
    The author has identified the following significant results. Although the degree to which ERTS-1 imagery can satisfy regional land use planning data needs is not yet known, it appears to offer means by which the data acquisition process can be immeasurably improved. The initial experiences of an interdisciplinary group attempting to formulate ways of analyzing the effectiveness of ERTS-1 imagery as a base for environmental monitoring and the resolution of regional land allocation problems are documented. Application of imagery to the regional planning process consists of utilizing representative geographical regions within the state of Wisconsin. Because of the need to describe and depict regional resource complexity in an interrelatable state, certain resources within the geographical regions have been inventoried and stored in a two-dimensional computer-based map form. Computer oriented processes were developed to provide for the economical storage, analysis, and spatial display of natural and cultural data for regional land use planning purposes. The authors are optimistic that the imagery will provide revelant data for land use decision making at regional levels

    The use of ERTS-1 data for the inventory of critical land resources for regional land use planning

    Get PDF
    Computer-generated spatial and statistical comparisons of critical land resource data derived from conventional sources, RB-57 photographs, and ERTS images, for an eastern Wisconsin test site, suggest that certain critical land resource data can be mapped from ERTS images on a statewide basis. This paper presents one of the biotic resources, wetlands, as an example of the use of ERTS imagery to inventory land resources

    Voltage-dependent Block of the Cystic Fibrosis Transmembrane Conductance Regulator Cl- Channel by Two Closely Related Arylaminobenzoates

    Get PDF
    The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 µM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses ~40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 ± 0.4 pS in symmetric 150 mM Cl^-. A subconductance state, measuring ~60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 µM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at V_m =-100 mV and not at V_m = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (~ 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at V_m = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may offer tools for use with site-directed mutagenesis to describe the permeation pathway

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa
    corecore