1,345 research outputs found
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage
Compensation between meridional flow components of the Atlantic MOC at 26°N
From ten years of observations of the Atlantic meridional overturning circulation (MOC) at 26° N (2004–2014), we revisit the question of flow compensation between components of the circulation. Contrasting with early results from the observations, transport variations of the Florida Current (FC) and upper mid-ocean (UMO) transports (top 1000 m east of the Bahamas) are now found to compensate on sub-annual timescales. The observed compensation between the FC and UMO transports is associated with horizontal circulation and means that this part of the correlated variability does not project onto the MOC. A deep baroclinic response to wind-forcing (Ekman transport) is also found in the lower North Atlantic Deep Water (LNADW; 3000–5000 m) transport. In contrast, co-variability between Ekman and the LNADW transports does contribute to overturning. On longer timescales, the southward UMO transport has continued to strengthen, resulting in a continued decline of the MOC. Most of this interannual variability of the MOC can be traced to changes in isopycnal displacements on the western boundary, within the top 1000 m and below 2000 m. Substantial trends are observed in isopycnal displacements in the deep ocean, underscoring the importance of deep boundary measurements to capture the variability of the Atlantic MOC
Quenching 2D Quantum Gravity
We simulate the Ising model on a set of fixed random graphs, which
corresponds to a {\it quenched} coupling to 2D gravity rather than the annealed
coupling that is usually considered. We investigate the critical exponents in
such a quenched ensemble and compare them with measurements on dynamical
graphs, flat lattices and a single fixed graph.Comment: 8 page
Stellar populations of classical and pseudo-bulges for a sample of isolated spiral galaxies
In this paper we present the stellar population synthesis results for a
sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic
data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that
both pseudo-bulges and classical bulges in our sample are predominantly
composed of old stellar populations, with mean mass-weighted stellar age around
10 Gyr. While the stellar population of pseudo-bulges is, in general, younger
than that of classical bulges, the difference is not significant, which
indicates that it is hard to distinguish pseudo-bulges from classical bulges,
at least for these isolated galaxies, only based on their stellar populations.
Pseudo-bulges have star formation activities with relatively longer timescale
than classical bulges, indicating that secular evolution is more important in
this kind of systems. Our results also show that pseudo-bulges have a lower
stellar velocity dispersion than their classical counterparts, which suggests
that classical bulges are more dispersion-supported than pseudo-bulges.Comment: 10 pages, 8 figures. Accepted for publication in Astrophysics & Space
Scienc
Major variations in subtropical North Atlantic heat transport at short (5 day) timescales and their causes
Variability in the North Atlantic ocean heat transport at 26.5°N on short (5-day) timescales is identified and contrasted with different behaviour at monthly intervals using a combination of RAPID/MOCHA/WBTS measurements and the NEMO-LIM2 1/12° ocean circulation/sea ice model. Wind forcing plays the leading role in establishing the heat transport variability through the Ekman transport response of the ocean and the associated driving atmospheric conditions vary significantly with timescale. We find that at 5-day timescales the largest changes in the heat transport across 26.5°N coincide with north-westerly airflows originating over the American land mass that drive strong southward anomalies in the Ekman flow. During these events the northward heat transport reduces by 0.5-1.4 PW. In contrast, the Ekman transport response at longer monthly timescales is smaller in magnitude (up to 0.5 PW) and consistent with expected variations in the leading mode of North Atlantic atmospheric variability, the North Atlantic Oscillation. The north-westerly airflow mechanism can have a prolonged influence beyond the central 5-day timescale and on occasion can reduce the accumulated winter ocean heat transport into the North Atlantic by ∼40%
Elastic Scattering of Pions From the Three-nucleon System
We examine the scattering of charged pions from the trinucleon system at a
pion energy of 180 MeV. The motivation for this study is the structure seen in
the experimental angular distribution of back-angle scattering for pi+ 3He and
pi- 3H but for neither pi- 3He nor pi+ 3H. We consider the addition of a double
spin flip term to an optical model treatment and find that, though the
contribution of this term is non-negligible at large angles for pi+ 3He and pi-
3H, it does not reproduce the structure seen in the experiment.Comment: 15 pages + 5 figure
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Agro-materials : a bibliographic review
Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
- …
