9,336 research outputs found
Boson Pairs in a One-dimensional Split Trap
We describe the properties of a pair of ultracold bosonic atoms in a
one-dimensional harmonic trapping potential with a tunable zero-ranged barrier
at the trap centre. The full characterisation of the ground state is done by
calculating the reduced single-particle density, the momentum distribution and
the two-particle entanglement. We derive several analytical expressions in the
limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to
finite interparticle interactions by numerical solution. As pair interactions
in double wells form a fundamental building block for many-body systems in
periodic potentials, our results have implications for a wide range of
problems.Comment: 9 pages, 8 figure
Distributed Optimization in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing
Energy Harvesting Wireless Sensor Networks (EH- WSNs) have been attracting increasing interest in recent years. Most current EH-WSN approaches focus on sensing and net- working algorithm design, and therefore only consider the energy consumed by sensors and wireless transceivers for sensing and data transmissions respectively. In this paper, we incorporate CPU-intensive edge operations that constitute in-network data processing (e.g. data aggregation/fusion/compression) with sens- ing and networking; to jointly optimize their performance, while ensuring sustainable network operation (i.e. no sensor node runs out of energy). Based on realistic energy and network models, we formulate a stochastic optimization problem, and propose a lightweight on-line algorithm, namely Recycling Wasted Energy (RWE), to solve it. Through rigorous theoretical analysis, we prove that RWE achieves asymptotical optimality, bounded data queue size, and sustainable network operation. We implement RWE on a popular IoT operating system, Contiki OS, and eval- uate its performance using both real-world experiments based on the FIT IoT-LAB testbed, and extensive trace-driven simulations using Cooja. The evaluation results verify our theoretical analysis, and demonstrate that RWE can recycle more than 90% wasted energy caused by battery overflow, and achieve around 300% network utility gain in practical EH-WSNs
On orbit validation of solar sailing control laws with thin-film spacecraft
Many innovative approaches to solar sail mission and trajectory design have been proposed over the years, but very few ever have the opportunity to be validated on orbit with real spacecraft. Thin- Film Spacecraft/Lander/Rovers (TF-SL Rs) are a new class of very low cost, low mass space vehicle which are ideal for inexpensively and quickly testing in flight new approaches to solar sailing. This paper describes using TF- SLR based micro solar sails to implement a generic solar sail test bed on orbit. TF -SLRs are high area- to-mass ratio (A/m) spacecraft developed for very low cost consumer and scientific deep space missions. Typically based on a 5 μm or thinner metalised substrate, they include an integrated avionics and payload system -on-chip (SoC) die bonded to the substrate with passive components and solar cells printed or deposited by Metal Organic Chemical Vapour Deposition (MOCVD). The avionics include UHF/S- band transceivers, processors, storage, sensors and attitude control provided by integrated magnetorquers and reflectivity control devices. Resulting spacecraft have a typical thickness of less than 50 μm, are 80 mm in diameter, and have a mass of less than 100 mg resulting in sail loads of less than 20 g/m 2 . TF -SLRs are currently designed for direct dispensing in swarms from free flying 0.5U Interplanetary CubeSats or dispensers attached to launch vehicles. Larger 160 mm, 320 mm and 640 mm diameter TF -SLRs utilizing a CubeSat compatible TWIST deployment mechanism that maintains the high A/m ratio are also under development. We are developing a mission to demonstrate the utility of these devices as a test bed for experimenting with a variety of mission designs and control laws. Batches of up to one hundred TF- SLRs will be released on earth escape trajectories, with each batch executing a heterogeneous or homogenous mixture of control laws and experiments. Up to four releases at different points in orbit are currently envisaged with experiments currently being studied in MATLAB and GMA T including managing the rate of separation of individual spacecraft, station keeping and single deployment/substantially divergent trajectory development. It is also hoped to be able to demonstrate uploading new experiment designs while in orbit and to make this capability available to researchers around the world. A suitable earth escape mission is currently being sought and it is hoped the test bed could be on orbit in 2017/18
Overcoming barriers to effective early parenting interventions for attention-deficit hyperactivity disorder (ADHD): parent and practitioner views
BackgroundThe importance of early intervention approaches for the treatment of attention-deficit hyperactivity disorder (ADHD) has been increasingly acknowledged. Parenting programmes (PPs) are recommended for use with preschool children with ADHD. However, low take-up' and high drop-out' rates compromise the effectiveness of such programmes within the community.
MethodsThis qualitative study examined the views of 25 parents and 18 practitioners regarding currently available PPs for preschool children with ADHD-type problems in the UK. Semi-structured interviews were undertaken to identify both barriers and facilitators associated with programme access, programme effectiveness, and continued engagement.
Results and conclusionsMany of the themes mirrored previous accounts relating to generic PPs for disruptive behaviour problems. There were also a number of ADHD-specific themes. Enhancing parental motivation to change parenting practice and providing an intervention that addresses the parents' own needs (e.g. in relation to self-confidence, depression or parental ADHD), in addition to those of the child, were considered of particular importance. Comparisons between the views of parents and practitioners highlighted a need to increase awareness of parental psychological barriers among practitioners and for better programme advertising generally. Clinical implications and specific recommendations drawn from these findings are discussed and presented
Predicted long-term mortality reduction associated with the second round of breast screening in East Anglia
Randomized trials have demonstrated that mammographic screening can reduce breast cancer mortality. Our aim was to estimate the reduction in mortality expected from the East Anglian breast screening programme. Breast screening achieves benefit by improving cancer prognosis (reducing tumour size, nodal involvement and possibly grade) through earlier diagnosis. We compared cancer prognosis between women invited for screening and those not yet invited in East Anglia, UK, in order to predict the mortality reduction achievable by screening, independently of any reduction due to changes in treatment and underlying disease. Participants (both invited and not-yet invited) were women eligible for invitation to first and second screens and diagnosed with invasive breast cancer in 1989–96. Death rates were predicted based on the observed distribution of tumour grade, size and node status amongst 950 cancers diagnosed following first invitation, up to and including at second screen (excluding those detected at first screening), and 451 cancers presenting symptomatically in women awaiting first invitation during the staggered introduction of screening, after adjustment for lead time amongst screen detected cases. For all ages, the ratio of predicted breast cancer mortality in the invited compared with the uninvited group was 0.85 (95% CI 0.78, 0.93). It was 0.93 (0.80, 1.08) for women aged 50–54 at diagnosis and 0.81 (0.72, 0.91) for those aged 55–64. We conclude that, by 2004, the second round of screening in East Anglia should reduce mortality by around 7% in women below age 55 at diagnosis, and by around 19% in those aged 55–64. © 2001 Cancer Research Campaign http://www.bjcancer.co
Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the british society of cardiovascular magnetic resonance
<p>Background: The indications, complexity and capabilities of cardiovascular magnetic resonance (CMR) have rapidly expanded. Whether actual service provision and training have developed in parallel is unknown.</p>
<p>Methods: We undertook a systematic telephone and postal survey of all public hospitals on behalf of the British Society of Cardiovascular Magnetic Resonance to identify all CMR providers within the United Kingdom.</p>
<p>Results: Of the 60 CMR centres identified, 88% responded to a detailed questionnaire. Services are led by cardiologists and radiologists in equal proportion, though the majority of current trainees are cardiologists. The mean number of CMR scans performed annually per centre increased by 44% over two years. This trend was consistent across centres of different scanning volumes. The commonest indication for CMR was assessment of heart failure and cardiomyopathy (39%), followed by coronary artery disease and congenital heart disease. There was striking geographical variation in CMR availability, numbers of scans performed, and distribution of trainees. Centres without on site scanning capability refer very few patients for CMR. Just over half of centres had a formal training programme, and few performed regular audit.</p>
<p>Conclusion: The number of CMR scans performed in the UK has increased dramatically in just two years. Trainees are mainly located in large volume centres and enrolled in cardiology as opposed to radiology training programmes.</p>
Dirac Fermions in Inhomogeneous Magnetic Field
We study a confined system of Dirac fermions in the presence of inhomogeneous
magnetic field. Splitting the system into different regions, we determine their
corresponding energy spectrum solutions. We underline their physical properties
by considering the conservation energy where some interesting relations are
obtained. These are used to discuss the reflexion and transmission coefficients
for Dirac fermions and check the probability condition for different cases. We
generalize the obtained results to a system with gap and make some analysis.
After evaluating the current-carrying states, we analyze the Klein paradox and
report interesting discussions.Comment: 28 pages, 15 figures. Version to appear in JP
- …