9,252 research outputs found
Phototransistor
A phototransistor is described in which there is included as a part of its integral structure an auxiliary diode in the form of an added base-collector junction. This junction is formed in the surface of the base element and thus out of the direct path between the emitter and collector regions of the phototransistor
Overlap diffusion for increasing phototransistor dynamic range
Construction of improved phototransistors to provide increased base-collector capacitance is described. Silicon or germanium semiconductor wafers are used as examples. Operation of transistors and electrical properties are discussed and illustrations of the devices are included
Time delay and integration detectors using charge transfer devices
An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates
Spacecraft Requirements Development and Tailoring
Spacecraft design is managed through the use of design requirements. Requirements are flowed from the highest level, the overall spacecraft, to systems, subsystems and ultimately individual components. Through the use of requirements, each part of the spacecraft will perform the functions that are required of it and will interface to the rest of the spacecraft. Functional requirements are used to make sure every component performs as expected and interface requirements ensure that each component works within the larger design environment where it operates. Writing good requirements is difficult and the verification of requirements can be expensive and time consuming. Because of this difficulty and expense, it is important that each requirement truly be required and critical to the overall performance of the vehicle. It is also important that requirements can be changed or eliminated as the system matures to minimize verification cost and schedule. The Capsule Parachute Assembly System (CPAS) Project is developing the parachute system for the NASA Multi-Purpose Crew Vehicle (MPCV) Orion Spacecraft. Throughout the development and qualification cycle for CPAS, requirements have been evaluated, added, eliminated, or more generically, tailored, to ensure that the system performs as required while minimizing the verification cost to the Program. One facet of this tailoring has been to delete requirements that do not add value to the overall spacecraft or are not needed. A second approach to minimize the cost of requirement verification has been to evaluate requirements based on the actual design as it has matured. As the design of the parachute system has become better understood, requirements that are not applicable have been eliminated. This paper will outline the evolution of CPAS requirements over time and will show how careful and considered changes to requirements can benefit the technical solution for the overall system design while allowing a Project to control costs
Uniform Density Theorem for the Hubbard Model
A general class of hopping models on a finite bipartite lattice is
considered, including the Hubbard model and the Falicov-Kimball model. For the
half-filled band, the single-particle density matrix \uprho (x,y) in the
ground state and in the canonical and grand canonical ensembles is shown to be
constant on the diagonal , and to vanish if and if and
are on the same sublattice. For free electron hopping models, it is shown in
addition that there are no correlations between sites of the same sublattice in
any higher order density matrix. Physical implications are discussed.Comment: 15 pages, plaintex, EHLMLRJM-22/Feb/9
On orbit validation of solar sailing control laws with thin-film spacecraft
Many innovative approaches to solar sail mission and trajectory design have been proposed over the years, but very few ever have the opportunity to be validated on orbit with real spacecraft. Thin- Film Spacecraft/Lander/Rovers (TF-SL Rs) are a new class of very low cost, low mass space vehicle which are ideal for inexpensively and quickly testing in flight new approaches to solar sailing. This paper describes using TF- SLR based micro solar sails to implement a generic solar sail test bed on orbit. TF -SLRs are high area- to-mass ratio (A/m) spacecraft developed for very low cost consumer and scientific deep space missions. Typically based on a 5 μm or thinner metalised substrate, they include an integrated avionics and payload system -on-chip (SoC) die bonded to the substrate with passive components and solar cells printed or deposited by Metal Organic Chemical Vapour Deposition (MOCVD). The avionics include UHF/S- band transceivers, processors, storage, sensors and attitude control provided by integrated magnetorquers and reflectivity control devices. Resulting spacecraft have a typical thickness of less than 50 μm, are 80 mm in diameter, and have a mass of less than 100 mg resulting in sail loads of less than 20 g/m 2 . TF -SLRs are currently designed for direct dispensing in swarms from free flying 0.5U Interplanetary CubeSats or dispensers attached to launch vehicles. Larger 160 mm, 320 mm and 640 mm diameter TF -SLRs utilizing a CubeSat compatible TWIST deployment mechanism that maintains the high A/m ratio are also under development. We are developing a mission to demonstrate the utility of these devices as a test bed for experimenting with a variety of mission designs and control laws. Batches of up to one hundred TF- SLRs will be released on earth escape trajectories, with each batch executing a heterogeneous or homogenous mixture of control laws and experiments. Up to four releases at different points in orbit are currently envisaged with experiments currently being studied in MATLAB and GMA T including managing the rate of separation of individual spacecraft, station keeping and single deployment/substantially divergent trajectory development. It is also hoped to be able to demonstrate uploading new experiment designs while in orbit and to make this capability available to researchers around the world. A suitable earth escape mission is currently being sought and it is hoped the test bed could be on orbit in 2017/18
Real-time optimisation-based path planning for visually impaired people in dynamic environments
Most existing outdoor assistive mobility solutions notify Visually Impaired People (VIP) about potential collisions but fail to provide Optimal Local Collision-Free Path Planning (OLCFPP) to enable the VIP to get out of the way effectively. In this paper, we propose MinD, the first VIP OLCFPP scheme that notifies the VIP of the shortest path required to avoid Critical Moving Objects (CMOs), like cars, motorcycles, etc. This simultaneously accounts for the VIP's mobility constraints, the different CMO types and movement patterns, and predicted collision times, conducting a safety prediction trajectory analysis of the optimal path for the VIP to move in. We implement a real-world prototype to conduct extensive outdoor experiments that record the aforementioned parameters, and this populates our simulations for evaluation against the state-of-the-art. Experimental results demonstrate that MinD outperforms the Artificial Potential Field (APF) approach in effectively planning a short collision-free route, requiring only 1.69m of movement on average, shorter than APF by 90.23%, with a 0% collision rate; adapting to the VIP's mobility limitations and provides a high safe time separation (>5.35s on average compared to APF). MinD also shows near real-time performance, with decisions taking only 0.04s processing time on a standard off-the-shelf laptop
Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps
Ultracold hybrid ion-atom traps offer the possibility of microscopic
manipulation of quantum coherences in the gas using the ion as a probe.
However, inelastic processes, particularly charge transfer can be a significant
process of ion loss and has been measured experimentally for the Yb ion
immersed in a Rb vapour. We use first-principles quantum chemistry codes to
obtain the potential energy curves and dipole moments for the lowest-lying
energy states of this complex. Calculations for the radiative decay processes
cross sections and rate coefficients are presented for the total decay
processes. Comparing the semi-classical Langevin approximation with the quantum
approach, we find it provides a very good estimate of the background at higher
energies. The results demonstrate that radiative decay mechanisms are important
over the energy and temperature region considered. In fact, the Langevin
process of ion-atom collisions dominates cold ion-atom collisions. For spin
dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole
interaction and the second-order spin-orbit coupling can play important roles,
inducing couplingbetween the spin and the orbital motion. They measured the
spin-relaxing collision rate to be approximately 5 orders of magnitude higher
than the charge-exchange collision rate \cite{kohl13}. Regarding the measured
radiative charge transfer collision rate, we find that our calculation is in
very good agreement with experiment and with previous calculations.
Nonetheless, we find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with previous theory that
the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol.
Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114
Tunable graphene system with two decoupled monolayers
The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
- …