102 research outputs found

    An Engineered Viral Protease Exhibiting Substrate Specificity for a Polyglutamine Stretch Prevents Polyglutamine-Induced Neuronal Cell Death

    Get PDF
    BACKGROUND: Polyglutamine (polyQ)-induced protein aggregation is the hallmark of a group of neurodegenerative diseases, including Huntington's disease. We hypothesized that a protease that could cleave polyQ stretches would intervene in the initial events leading to pathogenesis in these diseases. To prove this concept, we aimed to generate a protease possessing substrate specificity for polyQ stretches. METHODOLOGY/PRINCIPAL FINDINGS: Hepatitis A virus (HAV) 3C protease (3CP) was subjected to engineering using a yeast-based method known as the Genetic Assay for Site-specific Proteolysis (GASP). Analysis of the substrate specificity revealed that 3CP can cleave substrates containing glutamine at positions P5, P4, P3, P1, P2', or P3', but not substrates containing glutamine at the P2 or P1' positions. To accommodate glutamine at P2 and P1', key residues comprising the active sites of the S2 or S1' pockets were separately randomized and screened. The resulting sets of variants were combined by shuffling and further subjected to two rounds of randomization and screening using a substrate containing glutamines from positions P5 through P3'. One of the selected variants (Var26) reduced the expression level and aggregation of a huntingtin exon1-GFP fusion protein containing a pathogenic polyQ stretch (HttEx1(97Q)-GFP) in the neuroblastoma cell line SH-SY5Y. Var26 also prevented cell death and caspase 3 activation induced by HttEx1(97Q)-GFP. These protective effects of Var26 were proteolytic activity-dependent. CONCLUSIONS/SIGNIFICANCE: These data provide a proof-of-concept that proteolytic cleavage of polyQ stretches could be an effective modality for the treatment of polyQ diseases

    AIB1 gene amplification and the instability of polyQ encoding sequence in breast cancer cell lines

    Get PDF
    BACKGROUND: The poly Q polymorphism in AIB1 (amplified in breast cancer) gene is usually assessed by fragment length analysis which does not reveal the actual sequence variation. The purpose of this study is to investigate the sequence variation of poly Q encoding region in breast cancer cell lines at single molecule level, and to determine if the sequence variation is related to AIB1 gene amplification. METHODS: The polymorphic poly Q encoding region of AIB1 gene was investigated at the single molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer cell lines were studied by real-time quantitative PCR. RESULTS: Significant amplifications (5–23 folds) of AIB1 gene were found in 2 out of 9 (22%) ER positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-468 and MDA-MB-330). The AIB1 gene was not amplified in any of the ER negative cell lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1 amplification. When the cells were selected for hormone independence (LCC1) and resistance to 4-hydroxy tamoxifen (4-OH TAM) (LCC2 and R27), ICI 182,780 (LCC9) or 4-OH TAM, KEO and LY 117018 (LY-2), AIB1 copy number decreased but still remained highly amplified. Sequencing analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at least one under represented (<20%) extra poly Q encoding sequence patterns that were derived from the original allele, presumably due to somatic instability. Although all MCF-7 cells and their variants had the same predominant poly Q encoding sequence pattern of (CAG)(3)CAA(CAG)(9)(CAACAG)(3)(CAACAGCAG)(2)CAA of the original cell line, a number of altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines. CONCLUSION: These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in breast cancer cell lines. The instability and the sequence characteristics, however, do not appear to be associated with the level of the gene amplification

    Molecular Insights into the Pathogenesis of Alzheimer's Disease and Its Relationship to Normal Aging

    Get PDF
    Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegenerative stress). BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression

    Insulin/IGF and Sex Hormone Axes in Human Endometrium and Associations with Endometrial Cancer Risk Factors

    Get PDF
    Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point-object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2012 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Presenilin Controls CBP Levels in the Adult Drosophila Central Nervous System

    Get PDF
    Background: Dominant mutations in both human Presenilin (Psn) genes have been correlated with the formation of amyloid plaques and development of familial early-onset Alzheimer’s disease (AD). However, a definitive mechanism whereby plaque formation causes the pathology of familial and sporadic forms of AD has remained elusive. Recent discoveries of several substrates for Psn protease activity have sparked alternative hypotheses for the pathophysiology underlying AD. CBP (CREB-binding protein) is a haplo-insufficient transcriptional co-activator with histone acetly-transferase (HAT) activity that has been proposed to be a downstream target of Psn signaling. Individuals with altered CBP have cognitive deficits that have been linked to several neurological disorders. Methodology/Principal Findings: Using a transgenic RNA-interference strategy to selectively silence CBP, Psn, and Notch in adult Drosophila, we provide evidence for the first time that Psn is required for normal CBP levels and for maintaining specific global acetylations at lysine 8 of histone 4 (H4K8ac) in the central nervous system (CNS). In addition, flies conditionally compromised for the adult-expression of CBP display an altered geotaxis behavior that may reflect a neurological defect. Conclusions/Significance: Our data support a model in which Psn regulates CBP levels in the adult fly brain in a manner that is independent of Notch signaling. Although we do not understand the molecular mechanism underlying th

    Genetic Knock-Down of HDAC7 Does Not Ameliorate Disease Pathogenesis in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7

    Identification of Potential Therapeutic Drugs for Huntington's Disease using Caenorhabditis elegans

    Get PDF
    The prolonged time course of Huntington's disease (HD) neurodegeneration increases both the time and cost of testing potential therapeutic compounds in mammalian models. An alternative is to initially assess the efficacy of compounds in invertebrate models, reducing time of testing from months to days.We screened candidate therapeutic compounds that were identified previously in cell culture/animal studies in a C. elegans HD model and found that two FDA approved drugs, lithium chloride and mithramycin, independently and in combination suppressed HD neurotoxicity. Aging is a critical contributor to late onset neurodegenerative diseases. Using a genetic strategy and a novel assay, we demonstrate that lithium chloride and mithramycin remain neuroprotective independent of activity of the forkhead transcription factor DAF-16, which mediates the effects of the insulin-like signaling pathway on aging.These results suggest that pathways involved in polyglutamine-induced degeneration are distinct from specific aging pathways. The assays presented here will be useful for rapid and inexpensive testing of other potential HD drugs and elucidating pathways of drug action. Additionally, the neuroprotection conferred by lithium chloride and mithramycin suggests that these drugs may be useful for polyglutamine disease therapy

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    Activation of p38MAPK Contributes to Expanded Polyglutamine-Induced Cytotoxicity

    Get PDF
    The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood.Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCiota) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCiota by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1).Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders
    corecore