2,864 research outputs found

    New results on heavy hadron spectroscopy with NRQCD

    Get PDF
    We present results for the spectrum of b-bbar bound states in the quenched approximation for three different values of the lattice spacing. Results for spin-independent splittings are shown to have good scaling behaviour; spin-dependent splittings are more sensitive to discretisation effects. We discuss what needs to be done to match the experimental spectrum.Comment: 3 pages, contribution to Lattice'9

    A small sealed Ta crucible for thermal analysis of volatile metallic samples

    Get PDF
    Differential thermal analysis on metallic alloys containing volatile elements can be highly problematic. Here we show how measurements can be performed in commercial, small-sample, equipment without modification. This is achieved by using a sealed Ta crucible, easily fabricated from Ta tubing and sealed in a standard arc furnace. The crucible performance is demonstrated by measurements on a mixture of Mg and MgB2_2, after heating up to 1470C^{\circ}{\rm C}. We also show data, measured on an alloy with composition Gd40_{40}Mg60_{60}, that clearly shows both the liquidus and a peritectic, and is consistent with published phase diagram data

    Probing fractal magnetic domains on multiple length scales in Nd2Fe14B

    Get PDF
    Using small-angle neutron scattering, we demonstrate that the complex magnetic domain patterns at the surface of Nd2Fe14B, revealed by quantitative Kerr and Faraday microscopy, propagate into the bulk and exhibit structural features with dimensions down to 6 nm, the domain wall thickness. The observed fractal nature of the domain structures provides an explanation for the anomalous increase in the bulk magnetization of Nd2Fe14B below the spin-reorientation transition. These measurements open up a rich playground for studies of fractal structures in highly anisotropic magnetic systems.Comment: Accepted for publication in Phys. Rev. Lett. (4 pages, 4 figures

    Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction

    Full text link
    The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron (γT\gamma T) and phonon (βT3\beta T^{3}) contributions. The Debye temperature ΘD\Theta_{D} decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of ΘD\Theta_{D} from lattice dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44} are in agreement with the measured data. The linear coefficient of electronic specific heat γ\gamma remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level.Comment: 14 pages, 6 figure

    Phase transitions and iron-ordered moment form factor in LaFeAsO

    Get PDF
    Elastic neutron scattering studies of an optimized LaFeAsO single crystal reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O) structural transition occurs at TS156T_\texttt{S} \approx 156 K, and it exhibits a sharp transition at TP148T_\texttt{P} \approx 148 K. We argue that in the temperature range TST_\texttt{S} to TPT_\texttt{P}, T and O structures may dynamically coexist possibly due to nematic spin correlations recently proposed for the iron pnictides, and we attribute TPT_\texttt{P} to the formation of long-range O domains from the finite local precursors. The antiferromagnetic structure emerges at TN140T_\texttt{N} \approx 140 K, with the iron moment direction along the O \emph{a} axis. We extract the iron magnetic form factor and use the tabulated j0\langle j_0\rangle of Fe, Fe2+^{2+} and Fe3+^{3+} to obtain a magnetic moment size of \sim0.8 μB\mu_\texttt{B} at 9.5 K.Comment: 7 pages, 6 figures, 3 table

    Virtual Teaching Together: Engaging Parents and Young Children in STEM Activities

    Get PDF
    INTRODUCTION: Early informal learning experiences are essential for sparking long-term interest in science, technology, engineering, and math (STEM). In a prior study, we found more promising parent involvement outcomes when families of young children were provided with STEM family education events along with home STEM activity kits compared to providing workshops alone. This study was a conceptual replication using the same program- METHODS: Museum informal science educators introduced four units via virtual video chat sessions linked to 12 hands-on STEM activities that were mailed to families randomly assigned to the treatment group. Half of the families were assigned to a waitlist control group that received a portion of the virtual program after the posttest. Participants included 60 families with children aged 3 to 5 years from diverse linguistic and socioeconomic backgrounds. RESULTS: Our results indicate no significant group differences in the primary outcome of parents\u27 involvement in informal STEM but a small, positive effect size (ES = 0.18) that was similar in magnitude to the prior, in-person study. Although parents mostly perceived the remote delivery as convenient and the materials as engaging for their child, there were no significant program impacts on children\u27s general science interests (ES = -0.19). DISCUSSION: Despite the convenience, parents reported time was a barrier to doing STEM activities at home. Parents with lower education levels were less likely to attend, suggesting virtual approaches are not sufficient for ensuring broad access to family engagement programs for populations underrepresented in STEM

    Discovery of a binary icosahedral quasicrystal in Sc12_12Zn88_88

    Full text link
    We report the discovery of a new binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain, quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order, or phason strain. The discovery of i-Sc12_12Zn88_88 suggests that a reexamination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other, new binary quasicrystalline phases.Comment: Incorrect spelling in author list resolve

    The static quark-antiquark potential in QCD to three loops

    Get PDF
    The static potential between an infinitely heavy quark and antiquark is derived in the framework of perturbative QCD to three loops by performing a full calculation of the two-loop diagrams and using the renormalization group. The contribution of massless fermions is included.Comment: Latex, 11 pages, 3 figures included. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ . Revised version, essentially identical to the version published in Physical Review Letter
    corecore