2,652 research outputs found
The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO
We confirm the first detection of the molecular ion H3+ in an extragalactic
object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also
have detected absorption lines of the fundamental band of CO in this galaxy.
The CO absorption consists of a cold component close to the systemic velocity
and warm, highly blueshifted and redshifted components. The warm blueshifted
component is remarkably strong and broad and extends at least to -350 km/s.
Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW
and the same species seen toward the Galactic center. The profiles of the warm
CO components are not those expected from a dusty torus of the type thought to
obscure active galactic nuclei. They are probably formed close to the dust
continuum surface near the buried and active nucleus and are probably
associated with an unusual and energetic event there.Comment: 21 pages, 4 postscript figures, accepted by Ap
Duration of the Electromyographic Silent Period Following the Jaw-Jerk Reflex in Human Subjects
During voluntary jaw clenching, a sharp tap to the menton of the mandible resulted in a transitory silent period (pause) in the electromyographic activity of the masseter and anterior temporalis muscles. Factors that could influence the duration of the silent period were studied, including direction and magnitude of the stimulus applied by the operator, the amount of muscular effort exerted by the subjects, and varying occlusal vertical dimensions. Decreased isometric muscle force resulted in statistically significant increases in silent period durations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67989/2/10.1177_00220345770560061501.pd
Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized -Pu
The effects on the local structure due to self-irradiation damage of Ga
stabilized -Pu stored at cryogenic temperatures have been examined
using extended x-ray absorption fine structure (EXAFS) experiments. Extensive
damage, seen as a loss of local order, was evident after 72 days of storage
below 15 K. The effect was observed from both the Pu and Ga sites, although
less pronounced around Ga. Isochronal annealing was performed on this sample to
study the annealing processes that occur between cryogenic and room temperature
storage conditions, where damage is mostly reversed. Damage fractions at
various points along the annealing curve have been determined using an
amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite
model, and provide information complementary to previous electrical
resistivity- and susceptibility-based isochronal annealing studies. The use of
a spherical crystallite model accounts for the changes in EXAFS spectra using
just two parameters, namely, the crystalline fraction and the particle radius.
Together, these results are discussed in terms of changes to the local
structure around Ga and Pu throughout the annealing process and highlight the
unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure
Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate
The H3+ molecular ion plays a fundamental role in interstellar chemistry, as
it initiates a network of chemical reactions that produce many interstellar
molecules. In dense clouds, the H3+ abundance is understood using a simple
chemical model, from which observations of H3+ yield valuable estimates of
cloud path length, density, and temperature. On the other hand, observations of
diffuse clouds have suggested that H3+ is considerably more abundant than
expected from the chemical models. However, diffuse cloud models have been
hampered by the uncertain values of three key parameters: the rate of H3+
destruction by electrons, the electron fraction, and the cosmic-ray ionisation
rate. Here we report a direct experimental measurement of the H3+ destruction
rate under nearly interstellar conditions. We also report the observation of
H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is
already known. Taken together, these results allow us to derive the value of
the third uncertain model parameter: we find that the cosmic-ray ionisation
rate in this sightline is forty times faster than previously assumed. If such a
high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy
between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres
Superconductivity in the Correlated Pyrochlore Cd_2Re_2O_7
We report the observation of superconductivity in high-quality
CdReO single crystals with room-temperature pyrochlore structure.
Resistivity and ac susceptibility measurements establish an onset transition
temperature T = 1.47 K with transition width T = 0.25
K. In applied magnetic field, the resistive transition shows a type-II
character, with an approximately linear temperature-dependence of the upper
critical field H. The bulk nature of the superconductivity is confirmed
by the specific heat jump with C = 37.9 mJ/mol-K. Using the
value extracted from normal-state specific heat data, we obtain
C/T = 1.29, close to the weak coupling BCS value. In the
normal state, a negative Hall coefficient below 100 K suggests electron-like
conduction in this material. The resistivity exhibits a quadratic T-dependence
between 2 and 60 K, i.e., +AT, indicative of Fermi-liquid
behavior. The values of the Kadowaki-Woods ratio A/ and the Wilson
ratio are comparable to that for strongly correlated materials.Comment: 4 pages, 5 figure
Experimental Verification of 3D Plasmonic Cloaking in Free-Space
We report the experimental verification of metamaterial cloaking for a 3D
object in free space. We apply the plasmonic cloaking technique, based on
scattering cancellation, to suppress microwave scattering from a finite-length
dielectric cylinder. We verify that scattering suppression is obtained all
around the object in the near- and far-field and for different incidence
angles, validating our measurements with analytical results and full-wave
simulations. Our near-field and far-field measurements confirm that realistic
and robust plasmonic metamaterial cloaks may be realized for elongated 3D
objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ
General Relativistic Contributions in Transformation Optics
One potentially realistic specification for devices designed with
transformation optics is that they operate with high precision in curved
space-time, such as Earth orbit. This raises the question of what, if any, role
does space-time curvature play in determining transformation media?
Transformation optics has been based on a three-vector representation of
Maxwell's equations in flat Minkowski space-time. I discuss a completely
covariant, manifestly four-dimensional approach that enables transformations in
arbitrary space-times, and demonstrate this approach for stable circular orbits
in the spherically symmetric Schwarzschild geometry. Finally, I estimate the
magnitude of curvature induced contributions to satellite-borne transformation
media in Earth orbit and comment on the level of precision required for
metamaterial fabrication before such contributions become important.Comment: 14 pages, 3 figures. Latest version has expanded analysis,
corresponds to published versio
Muon spin rotation measurements of the superfluid density in fresh and aged superconducting PuCoGa
We have measured the temperature dependence and magnitude of the superfluid
density via the magnetic field penetration depth
in PuCoGa (nominal critical temperature K) using the muon
spin rotation technique in order to investigate the symmetry of the order
parameter, and to study the effects of aging on the superconducting properties
of a radioactive material. The same single crystals were measured after 25 days
( K) and 400 days ( K) of aging at room temperature.
The temperature dependence of the superfluid density is well described in both
materials by a model using d-wave gap symmetry. The magnitude of the muon spin
relaxation rate in the aged sample, , where is the effective mass, is reduced by
about 70% compared to fresh sample. This indicates that the scattering from
self-irradiation induced defects is not in the limit of the conventional
Abrikosov-Gor'kov pair-breaking theory, but rather in the limit of short
coherence length (about 2 nm in PuCoGa) superconductivity.Comment: 11 page
Four Poynting Theorems
The Poynting vector is an invaluable tool for analysing electromagnetic
problems. However, even a rigorous stress-energy tensor approach can still
leave us with the question: is it best defined as \Vec{E} \cross \Vec{H} or
as \Vec{D} \cross \Vec{B}? Typical electromagnetic treatments provide yet
another perspective: they regard \Vec{E} \cross \Vec{B} as the appropriate
definition, because \Vec{E} and \Vec{B} are taken to be the fundamental
electromagnetic fields. The astute reader will even notice the fourth possible
combination of fields: i.e. \Vec{D} \cross \Vec{H}. Faced with this diverse
selection, we have decided to treat each possible flux vector on its merits,
deriving its associated energy continuity equation but applying minimal
restrictions to the allowed host media. We then discuss each form, and how it
represents the response of the medium. Finally, we derive a propagation
equation for each flux vector using a directional fields approach; a useful
result which enables further interpretation of each flux and its interaction
with the medium.Comment: 8 pages. Updated slightly from EJP versio
- …