6 research outputs found

    Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup

    No full text
    In predicting storm impacts on sandy coasts, possibly with structures, accurate runup and overtopping simulation is an important aspect. Recent investigations (Stockdon et al., 2014; Palmsten and Splinter, 2016) show that despite accurate predictions of the morphodynamics of dissipative sandy beaches, the XBeach model (Roelvink et al., 2009) does not correctly simulate the individual contributions of set-up, and infragravity and incident-band swash to the wave run-up. In this paper we describe an improved numerical scheme and a different way of simulating the propagation of directionally-spread short wave groups in XBeach to better predict the groupiness of the short waves and the resulting infragravity waves. The new approach is tested against field measurements from the DELILAH campaign at Duck, NC, and against video-derived runup measurements at Praia de Faro, a relatively steep sandy beach. Compared to the empirical fit by Vousdoukas et al. (2012) the XBeach model performs much better for more extreme wave conditions, which are severely underestimated by existing empirical formulations.For relatively steep beaches incident-band swash cannot be neglected and a wave-resolving simulation mode is required. Therefore in this paper we also test the non-hydrostatic, wave-resolving model within XBeach for runup and overtopping against three datasets. Results for a high-quality flume test show non-hydrostatic XBeach predicts the run-up height with good accuracy (maximum deviation 15%). A case with a very shallow foreshore typical for the Belgian coast at Wenduine was compared against detailed measurements. Overall the model shows correct behavior for this case. Finally, the model is tested against a large number (551) of physical model tests of overtopping from the CLASH database. For relatively high overtopping discharges the non-hydrostatic XBeach performs quite well, with increasing accuracy for increasing overtopping rates. However, for relatively low overtopping rates of less than 10-20 l/m/s, the model systematically underestimates measured overtopping rates.Coastal Engineerin

    Modelling wave group-scale hydrodynamics on orthogonal unstructured meshes

    No full text
    An unstructured hydrodynamic model is presented that is able to simulate 2D nearshore hydrodynamics on the wave group scale. A non-stationary wave driver with directional spreading, with physics similar to XBeach (Roelvink et al., 2009) is linked to an improved and extended version of the existing unstructured flow solver Delft3D–FM (Kernkamp et al., 2011; Martyr-Koller et al., 2017). The model equations are discretised on meshes consisting of triangular and rectangular elements. The model allows for coverage of the model domain with locally optimised resolution to accurately resolve the dominant processes, yet with a smaller total number of grid cells. The model also allows a larger explicit time step, compared to structured models with similar functionality. The model reliably reproduces measured datasets of water levels, sea/swell and low frequency wave heights in laboratory and field conditions, and is as such widely deployable in a variety of simple and complex coastal settings to study nearshore hydrodynamics.Coastal Engineerin

    Cross-shore intertidal bar behavior along the dutch coast: Laser measurements and conceptual model

    No full text
    Intertidal bars are naturally occurring morphological features along the waterline of sandy beaches. Present quantitative knowledge on intertidal bar behavior is limited, due to the scarcity of data resources and the limitations of traditional survey techniques. To investigate and quantify the cross-shore morphologic behavior of intertidal bars, hourly terrestrial laser scans of Kijkduin beach (The Netherlands) are used and a conceptual evolution intertidal bar model is constructed. In a six-week period in January and February 2017, a pronounced intertidal bar formed at Kijkduin beach and migrated onshore during mild wave conditions and eroded again during storm conditions. The observed maximum shoreward migration was 30 m horizontally with a maximum growth of about 1 m in the vertical direction. Onshore sediment transport fluxes peaked around 2 m3 per m width per day. In the conceptual model proposed here, run-up and overwash processes are dominant for shoreward growth and migration of the bar and submersion processes are responsible for bar destruction.Coastal EngineeringEnvironmental Fluid Mechanic

    Hydro-Morphological Characterization of Coral Reefs for Wave Runup Prediction

    No full text
    Many coral reef-lined coasts are low-lying with elevations <4 m above mean sea level. Climate-change-driven sea-level rise, coral reef degradation, and changes in storm wave climate will lead to greater occurrence and impacts of wave-driven flooding. This poses a significant threat to their coastal communities. While greatly at risk, the complex hydrodynamics and bathymetry of reef-lined coasts make flood risk assessment and prediction costly and difficult. Here we use a large (>30,000) dataset of measured coral reef topobathymetric cross-shore profiles, statistics, machine learning, and numerical modeling to develop a set of representative cluster profiles (RCPs) that can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the large dataset is reduced by clustering cross-shore profiles based on morphology and hydrodynamic response to typical wind and swell wave conditions. By representing a large variety of coral reef morphologies with a reduced number of RCPs, a computationally feasible number of numerical model simulations can be done to obtain wave runup estimates, including setup at the shoreline and swash separated into infragravity and sea-swell components, of the entire dataset. The predictive capability of the RCPs is tested against 5,000 profiles from the dataset. The wave runup is predicted with a mean error of 9.7–13.1%, depending on the number of cluster profiles used, ranging from 312 to 50. The RCPs identified here can be combined with probabilistic tools that can provide an enhanced prediction given a multivariate wave and water level climate and reef ecology state. Such a tool can be used for climate change impact assessments and studying the effectiveness of reef restoration projects, as well as for the provision of coastal flood predictions in a simplified (global) early warning system.Environmental Fluid MechanicsCoastal Engineerin

    Efficient two-layer non-hydrostatic wave model with accurate dispersive behaviour

    No full text
    A 2-layer non-hydrostatic model with improved dispersive behaviour is presented. Due to the assumption of a constant non-hydrostatic pressure distribution in the lower layer, the dispersive behaviour is improved without much additional computational time. A comparison with linear wave theory showed that this 2-layer model gives a better result for the dispersion relation and shoaling of waves in intermediate water. This means that the 2-layer model is applicable in shallow and intermediate water depths (up to relative depths kh equals 4), whereas the 1-layer model is only applicable in shallow water depths (kh smaller than 1). Three laboratory experiments, including a fringing reef and a barred beach, were used to validate the presented mode for different hydrodynamic conditions. Based on these results, it can be concluded that the 2-layer model can be applied to accurately simulate the bulk wave height and spectral properties. The low frequency wave height, the setup and in particular the second order statistics contain more scatter, but the model accurately captured the general trend. Furthermore, the model showed good results for complex bathymetries in shallow to intermediate water.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Environmental Fluid Mechanic
    corecore