454 research outputs found

    Loss of signal transducer and activator of transcription 1 is associated with prostate cancer recurrence

    Get PDF
    STAT1 loss has previously been implicated in cell line studies to modify prostate cancer cell growth and survival, however the clinical significance of this has not previously been established. This study investigated if STAT1 loss was associated with patient outcome measures and the phenotypic consequence of STAT1 silencing. STAT1 expression was assessed in two patient cohorts with localised (n = 78) and advanced prostate cancer at initial diagnosis (n = 39) by immunohistochemistry (IHC). Impact of STAT1 silencing on prostate cancer cells lines was assessed using Cell Death detection ELISA, TLDA gene signature apoptosis arrays, WST-1 assay, xCELLigence system, clonogenic assay, and wound healing assay. In the localised patient cohort, low expression of STAT1 was associated with shorter time to disease recurrence (3.8 vs 7.3 years, P = 0.02) and disease specific survival (6.6 vs 9.3 years, P = 0.05). In the advanced patient cohort, low expression was associated with shorter time to disease recurrence (2.0 vs 3.9 years, P = 0.001). When STAT1 was silenced in PC3 cells (AR negative) and LNCaP cells (AR positive) silencing did not influence levels of apoptosis in either cell line and had little effect on cell viability in the LNCaP cells. In contrast, STAT1 silencing in the PC3 cells resulted in a pronounced increase in cell viability (WST-1 assay: mock silenced vs STAT1 silenced, P < 0.001), clonagenicity (clonogenic assay: mock silenced vs STAT1 silenced, P < 0.001), and migration (wound healing: mock silenced vs STAT1 silenced, P < 0.001). In conclusion, loss of STAT1 may promote prostate cancer recurrence in AR negative patients via increasing cell viability

    Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem.

    Get PDF
    Recent work in combinatorial optimisation have demonstrated that neighbouring solutions of a local optima may belong to more favourable attraction basins. In this sense, the perturbation strategy plays a critical role on local search based algorithms to kick the search of the algorithm into more prominent areas of the space. In this paper, we investigate the landscape rotation as a perturbation strategy to redirect the search of an stuck algorithm. This technique rearranges the mapping of solutions to different objective values without altering important properties of the problem's landscape such as the number and quality of optima, among others. Particularly, we investigate two rotation based perturbation strategies: (i) a profoundness rotation method and (ii) a broadness rotation method. These methods are applied into the stochastic hill-climbing heuristic and tested and compared on different instances of the quadratic assignment problem against other algorithm versions. Performed experiments reveal that the landscape rotation is an efficient perturbation strategy to shift the search in a controlled way. Nevertheless, an empirical investigation of the landscape rotation demonstrates that it needs to be cautiously manipulated in the permutation space since a small rotation does not necessarily mean a small disturbance in the fitness landscape

    A Regulatory Framework for Strengthening Defined Benefit Pensions

    Get PDF
    Recent financial market and plan termination experiences have exposed the shortcomings of existing funding, disclosure, and premium rules governing private single-employer defined benefit pension plans in the United States. These rules were designed to provide predictability for plan sponsors and administrators, by insulating pension plans from the realities of economic and financial market fluctuations. Unfortunately current practice often overlooks key financial principles that arguably should inform a responsible set of pension rules and the insurance system backing the plans. We outline the key characteristics of pension plans needed to beneficially guide rule-making and offer examples drawn from proposed funding and premium rule

    Androgen receptor phosphorylation at serine 308 and serine 791 predicts enhanced survival in castrate resistant prostate cancer patients

    Get PDF
    We previously reported that AR phosphorylation at serine 213 was associated with poor outcome and may contribute to prostate cancer development and progression. This study investigates if specific AR phosphorylation sites have differing roles in the progression of hormone naïve prostate cancer (HNPC) to castrate resistant disease (CRPC). A panel of phosphospecific antibodies were employed to study AR phosphorylation in 84 matched HNPC and CRPC tumours. Immunohistochemistry measured Androgen receptor expression phosphorylated at serine residues 94 (pAR<sub>94</sub>), 308 (pAR<sub>308</sub>), 650(pAR<sub>650</sub>) and 791(pAR<sub>791</sub>). No correlations with clinical parameters were observed for pAR<sub>94</sub> or pAR<sub>650</sub> in HNPC or CRPC tumours. In contrast to our previous observation with serine 213, high pAR<sub>308</sub> is significantly associated with a longer time to disease specific death (p= 0.011) and high pAR<sub>791</sub> expression significantly associated with a longer time to disease recurrence (p= 0.018) in HNPC tumours and longer time to death from disease recurrence (p= 0.040) in CRPC tumours. This observation in CRPC tumours was attenuated in high apoptotic tumours (p= 0.022) and low proliferating tumours (p= 0.004). These results demonstrate that understanding the differing roles of AR phosphorylation is necessary before this can be exploited as a target for castrate resistant prostate cancer

    Application of quality by design concepts and automation to improve manufacturing process consistency of development and clinical-stage cell therapies

    Get PDF
    Designing manufacturing processes to reproducibly generate process-sensitive human cells of sufficient quantity and quality for clinical application is challenging and complex. Manufacture of cell therapies in manual flask based processes is controlled primarily through adherence to detailed SOPs which may contain subjective user interventions and relatively poorly defined operating controls. This situation can lead to clinical production processes with limited control of critical quality attributes, significant reliance on endpoint quality testing and consequent product wastage. Applying systematic and data driven approaches to process development, many of which form part of the Quality by Design (QbD) toolset, reduces manufacturing process risk. We have applied these approaches with a series of partners and cell types to demonstrate application of QbD tools to cell therapies. This includes statistical capability analysis to define process confidence limits for expansion processes, to identify sources of process variability, and to quantify process performance in relation to the process specification and necessary scale. This further enables risk assessment and gap analysis to identify and prioritise key manufacture process risks with common recurrent elements including input materials, cryo-strategy, and operational parameters pertaining to culture and medium supply strategy. Key variable screening via statistically designed experiments has enabled improvement in process consistency across multiple operations and an improved understanding of process tolerance to parameter levels. It also highlights where automation could be applied to enhance process reproducibility and increase process scale whilst retaining process format with comparability to prior manufacturing development. CompacT SelecT automated manufacturing processes have demonstrated consistently greater cell yields than manual processes with statistical analysis showing significantly improved confidence intervals between multiple production batches and facilitating identification of remaining sources of variation for further targeted process improvement. Example case studies include a partnership with ReNeuron, a UK-based stem cell therapy business currently undergoing a phase II clinical trial with its CTX cell therapy candidate to enhance motor recovery in disabled stroke patients, to develop scalable robust production processes for the CTX cell line

    From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease

    Get PDF
    Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing

    Eighth National GP Worklife Survey

    Get PDF

    On the definition of dynamic permutation problems under landscape rotation.

    Get PDF
    Dynamic optimisation problems (DOPs) are optimisation problems that change over time. Typically, DOPs have been defined as a sequence of static problems, and the dynamism has been inserted into existing static problems using different techniques. In the case of dynamic permutation problems, this process has been usually done by the rotation of the landscape. This technique modifies the encoding of the problem and maintains its structure over time. Commonly, the changes are performed based on the previous state, recreating a concatenated changing problem. However, despite its simplicity, our intuition is that, in general, the landscape rotation may induce severe changes that lead to problems whose resemblance to the previous state is limited, if not null. Therefore, the problem should not be classified as a DOP, but as a sequence of unrelated problems. In order to test this, we consider the flow shop scheduling problem (FSSP) as a case study and the rotation technique that relabels the encoding of the problem according to a permutation. We compare the performance of two versions of the state-of-the-art algorithm for that problem on a wide experimental study: an adaptive version that benefits from the previous knowledge and a restarting version. Conducted experiments confirm our intuition and reveal that, surprisingly, it is preferable to restart the search when the problem changes even for some slight rotations. Consequently, the use of the rotation technique to recreate dynamic permutation problems is revealed in this work
    • …
    corecore