315 research outputs found

    Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model

    Get PDF
    Accurate imaging of the ischemic penumbra is a prerequisite for acute clinical stroke research. T2* magnetic resonance imaging (MRI) combined with an oxygen challenge (OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. However, inducing OC with 100% O2 induces sinus artefacts on human scans and influences cerebral blood flow (CBF), which can affect T2* signal. Therefore, we investigated replacing 100% O2 OC with 40% O2 OC (5 minutes 40% O2 versus 100% O2) and determined the effects on blood pressure (BP), CBF, tissue pO2, and T2* signal change in presumed penumbra in a rat stroke model. Probes implanted into penumbra and contralateral cortex simultaneously recorded pO2 and CBF during 40% O2 (n=6) or 100% O2 (n=8) OC. In a separate MRI study, T2* signal change to 40% O2 (n=6) and 100% O2 (n=5) OC was compared. Oxygen challenge (40% and 100% O2) increased BP by 8.2% and 18.1%, penumbra CBF by 5% and 15%, and penumbra pO2 levels by 80% and 144%, respectively. T2* signal significantly increased by 4.56%±1.61% and 8.65%±3.66% in penumbra compared with 2.98%±1.56% and 2.79%±0.66% in contralateral cortex and 1.09%±0.82% and −0.32%±0.67% in ischemic core, respectively. For diagnostic imaging, 40% O2 OC could provide sufficient T2* signal change to detect penumbra with limited influence in BP and CBF

    Prospectus, August 23, 1976

    Get PDF
    7.4MILLIONBUDGETAPPROVEDBYPARKLANDBOARDOFTRUSTEES;PCradiopermitsought;CalendarofEvents;StephenD.Fisher;Editorial:LettertoaParklandmommy;Greetingsfromtheschool,Stu−Go,andProspectus:WellHello,Hello,Hello….....;Foodservicetrainingprog.tobegin;Useyourfacilities:GameRoomopendaily;67hoursand40minutes:JulieCorleystarrocker;5newteachers;Stu−GoelectionsSept.14,15;AttentionVeterans;Projectedstudentgovernmentbudget;Nationalcompetitors:Debateneedsnewtalent;ParklandG.E.D.:Programhelpsdiploma−seekers;Signupforladdertournaments;Getinvolved:Poli−sciforToday−−withalittleEcon000.1thrownin;Donkeysorelephants,thechoiceisyours;Storyoftheyear:SchorraddressesParkland;Lost?...andfound;Gotadime?;PeerCounselingbegins;C−Uawarenesstaught;Cubs−CardstripSept.5;Gen.Ed.coursesoffered;CreativeWritingofferedthisfall;Peschkareceives7.4 MILLION BUDGET APPROVED BY PARKLAND BOARD OF TRUSTEES; PC radio permit sought; Calendar of Events; Stephen D. Fisher; Editorial: Letter to a Parkland mommy; Greetings from the school, Stu-Go, and Prospectus: Well Hello, Hello, Hello….....; Food service training prog. to begin; Use your facilities: Game Room open daily; 67 hours and 40 minutes: Julie Corley star rocker; 5 new teachers; Stu-Go elections Sept. 14, 15; Attention Veterans; Projected student government budget; National competitors: Debate needs new talent; Parkland G.E.D.: Program helps diploma-seekers; Sign up for ladder tournaments; Get involved : Poli-sci for Today -- with a little Econ 000.1 thrown in; Donkeys or elephants, the choice is yours; Story of the year: Schorr addresses Parkland; Lost?... and found; Got a dime?; Peer Counseling begins; C-U awareness taught; Cubs-Cards trip Sept. 5; Gen. Ed. courses offered; Creative Writing offered this fall; Peschka receives 10,000; University Theatre Announces 76-77 Schedule; Peggy Cass Stars in Sullivan; Kooning opens Krannert season; Student tax cut proposed; Classifieds; Abbey elected pres. NJCAA coaches; Athletic Schedules \u2776\u27; A Warm Welcome to Parkland College; Directory of Offices and Services; Items of Interest About the Campus; Campus Services - Day and Eveninghttps://spark.parkland.edu/prospectus_1976/1015/thumbnail.jp

    Photochemical Data of Stormflow Samples Collected Near Minneapolis and St. Paul, Minnesota from 2014-September to 2015-October

    Get PDF
    Stormflow samples were collected from 31 sites near Minneapolis and St. Paul, Minnesota between 2014-September and 2015-October. Optical and photochemical parameters of the samples were measured under controlled laboratory conditions. The data were collected to better understand the way in which land cover with variable levels of human impact influence the formation rate and yield of triplet excited states of dissolved natural organic matter (3DOM*). Rates of formation (Rf,T) and apparent quantum yields (AQYT) were measured for 3DOM* using the chemical probe, 2,4,6-trimethylphenol, under a broadband xenon-arc lamp with a 290-nm wavelength filter.Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative and Citizen Commission on Minnesota ResourcesNational Science Foundation (CBET-143414)Doctoral Dissertation Fellowship from the Graduate School at the University of Minnesot

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 2. Validation based on the consequences of reperfusion

    Get PDF
    Magnetic resonance imaging (MRI) with oxygen challenge (T2* OC) uses oxygen as a metabolic biotracer to define penumbral tissue based on CMRO2 and oxygen extraction fraction. Penumbra displays a greater T2* signal change during OC than surrounding tissue. Since timely restoration of cerebral blood flow (CBF) should salvage penumbra, T2* OC was tested by examining the consequences of reperfusion on T2* OC-defined penumbra. Transient ischemia (109±20 minutes) was induced in male Sprague-Dawley rats (n=8). Penumbra was identified on T2*-weighted MRI during OC. Ischemia and ischemic injury were identified on CBF and apparent diffusion coefficient maps, respectively. Reperfusion was induced and scans repeated. T2 for final infarct and T2* OC were run on day 7. T2* signal increase to OC was 3.4% in contralateral cortex and caudate nucleus and was unaffected by reperfusion. In OC-defined penumbra, T2* signal increased by 8.4%±4.1% during ischemia and returned to 3.25%±0.8% following reperfusion. Ischemic core T2* signal increase was 0.39%±0.47% during ischemia and 0.84%±1.8% on reperfusion. Penumbral CBF increased from 41.94±13 to 116.5±25 mL per 100 g per minute on reperfusion. On day 7, OC-defined penumbra gave a normal OC response and was located outside the infarct. T2* OC-defined penumbra recovered when CBF was restored, providing further validation of the utility of T2* OC for acute stroke management

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography

    Get PDF
    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VII. Ophiuchus Observed with MIPS

    Get PDF
    We present maps of 14.4 deg^2 of the Ophiuchus dark clouds observed by the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). These high-quality maps depict both numerous point sources and extended dust emission within the star-forming and non–star-forming portions of these clouds. Using PSF-fitting photometry, we detect 5779 sources at 24 μm and 81 sources at 70 μm at the 10 σ level of significance. Three hundred twenty-three candidate young stellar objects (YSOs) were identified according to their positions on the MIPS/2MASS K versus color-magnitude diagrams, as compared to 24 μm detections in the SWIRE extragalactic survey. We find that more than half of the YSO candidates, and almost all those with protostellar Class I spectral energy distributions, are confined to the known cluster and aggregates

    Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Get PDF
    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition
    • …
    corecore