7,601 research outputs found

    Spectrometric study of condensed phase species of thorium and palladium-based modifiers in a complex matrix for electrothermal atomic absorption spectrometry

    Get PDF
    The chemical and morphological transformations of condensed phase species of a thorium-based modifier were studied over the temperature range 200–2500 °C, without and with the presence of aluminium and silicon as matrix components, and in some instances, arsenic as an analyte element. A similar study was also conducted with palladium as the modifier, for comparison. Results were derived using scanning electron microscopy (SEM), energy dispersive (ED) X-ray spectrometry, Raman microanalysis and attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectrometry. Comparable results were found using pyrolytic and non-pyrolytic graphite platforms, with processes occurring at slightly higher temperatures on the pyrolytic graphite platform. With thorium as the modifier, metal oxides were the predominant species on the platform surface at relatively low temperatures (<1500 °C), whereas metal phases became prevalent at high temperatures, when thorium and aluminium tended to behave independently from one other. Some spatial variations in the composition of the salt residues on different regions of the platform were observed (from the region closest to the slot in the tube, to the region furthest from the slot). Nonetheless, thorium metal remained on the graphite platform to higher temperatures than did aluminium metal. In the presence of arsenic, the existence of mixtures of thorium and arsenic oxides, just before the appearance temperature of gas phase arsenic atoms, was confirmed by SEM studies, ED X-ray spectra and Raman microanalysis. This suggests that any modifying effect of thorium on arsenic occurs while the modifier is in the oxide phase rather than in the metal phase. The presence of silicon added as silica, did not influence significantly the thermochemical behaviour of mixtures of thorium and aluminium. However, coexistence of silicon and arsenic oxides at the appearance temperature of the atomic absorption signal of arsenic was obtained, confirming that silicon can act as an internal modifier for arsenic. In the presence of palladium, aluminium exhibited greater interaction with the modifier; consequently, aluminium metal was retained on the platform surface to higher temperatures than thorium, which could explain how interference effects of aluminium on e.g. arsenic are avoided or reduced. Similarly, there was evidence for interaction of palladium and arsenic in the reduced state. However, when aluminium and silicon were present, the transformation of the palladium oxide to the metallic state was affected, which could diminish the modifying benefits of palladium for arsenic in the presence of aluminium

    Partial Evaluation for Java Malware Detection

    Get PDF
    The fact that Java is platform independent gives hackers the opportunity to write exploits that can target users on any platform, which has a JVM implementation. Metasploit is a well-known source of Java exploits and to circumvent detection by Anti Virus (AV) software, obfuscation techniques are routinely applied to make an exploit more difficult to recognise. Popular obfuscation techniques for Java include string obfuscation and applying reflection to hide method calls; two techniques that can either be used together or independently. This paper shows how to apply partial evaluation to remove these obfuscations and thereby improve AV matching. The paper presents a partial evaluator for Jimple, which is a typed three-address code suitable for optimisation and program analysis, and also demonstrates how the residual Jimple code, when transformed back into Java, improves the detection rates of a number of commercial AV products

    The non-unique Universe

    Get PDF
    The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Godel's incompleteness theorem for theories of everything. Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model

    Critical Excitation Spectrum of Quantum Chain With A Local 3-Spin Coupling

    Full text link
    This article reports a measurement of the low-energy excitation spectrum along the critical line for a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields. The measured excitation spectrum agrees with that predicted by the (D4_4, A4_4) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the 2D 3-state Potts model are in the same universality class.Comment: 7 pages, 2 figure

    The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K

    Get PDF
    We report rate coefficients for the relaxation of OH(v = 1) and OD(v = 1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10–12 cm3 molecule–1 s–1) can be expressed as: for OH(v = 1) + H2O between 263 and 390 K: k = (2.4 ± 0.9) exp((460 ± 115)/T); for OH(v = 1) + D2O between 256 and 371 K: k = (0.49 ± 0.16) exp((610 ± 90)/T); for OD(v = 1) + H2O between 251 and 371 K: k = (0.92 ± 0.16) exp((485 ± 48)/T); for OD(v = 1) + D2O between 253 and 366 K: k = (2.57 ± 0.09) exp((342 ± 10)/T). Rate coefficients at (297 ± 1 K) are also reported for the relaxation of OH(v = 2) by D2O and the relaxation of OD(v = 2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O–HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O–HO, D2O–HO, H2O–DO and D2O–DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates—assuming that relaxation proceeds via the hydrogen-bonded complexes

    Recent Decisions

    Get PDF

    Cloud Chamber: A Performance with Real Time Two-Way Interaction between Subatomic Particles and Violinist

    Get PDF
    ‘Cloud Chamber’ - a composition by Alexis Kirke, Antonino Chiaramonte, and Anna Troisi - is a live performance in which the invisible quantum world becomes visible as a violinist and subatomic particle tracks interact together. An electronic instrument was developed which can be “played” live by radioactive atomic particles. Electronic circuitry was developed enabling a violin to create a physical force field that directly affects the ions generated by cosmic radiation particles. This enabled the violinist and the ions to influence each other musically in real time. A glass cloud chamber was used onstage to make radioactivity visible in bright white tracks moving within, with the tracks projected onto a large screen

    Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model

    Get PDF
    Accurate imaging of the ischemic penumbra is a prerequisite for acute clinical stroke research. T2* magnetic resonance imaging (MRI) combined with an oxygen challenge (OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. However, inducing OC with 100% O2 induces sinus artefacts on human scans and influences cerebral blood flow (CBF), which can affect T2* signal. Therefore, we investigated replacing 100% O2 OC with 40% O2 OC (5 minutes 40% O2 versus 100% O2) and determined the effects on blood pressure (BP), CBF, tissue pO2, and T2* signal change in presumed penumbra in a rat stroke model. Probes implanted into penumbra and contralateral cortex simultaneously recorded pO2 and CBF during 40% O2 (n=6) or 100% O2 (n=8) OC. In a separate MRI study, T2* signal change to 40% O2 (n=6) and 100% O2 (n=5) OC was compared. Oxygen challenge (40% and 100% O2) increased BP by 8.2% and 18.1%, penumbra CBF by 5% and 15%, and penumbra pO2 levels by 80% and 144%, respectively. T2* signal significantly increased by 4.56%±1.61% and 8.65%±3.66% in penumbra compared with 2.98%±1.56% and 2.79%±0.66% in contralateral cortex and 1.09%±0.82% and −0.32%±0.67% in ischemic core, respectively. For diagnostic imaging, 40% O2 OC could provide sufficient T2* signal change to detect penumbra with limited influence in BP and CBF
    corecore