597 research outputs found

    Analysis of Dialogical Argumentation via Finite State Machines

    Get PDF
    Dialogical argumentation is an important cognitive activity by which agents exchange arguments and counterarguments as part of some process such as discussion, debate, persuasion and negotiation. Whilst numerous formal systems have been proposed, there is a lack of frameworks for implementing and evaluating these proposals. First-order executable logic has been proposed as a general framework for specifying and analysing dialogical argumentation. In this paper, we investigate how we can implement systems for dialogical argumentation using propositional executable logic. Our approach is to present and evaluate an algorithm that generates a finite state machine that reflects a propositional executable logic specification for a dialogical argumentation together with an initial state. We also consider how the finite state machines can be analysed, with the minimax strategy being used as an illustration of the kinds of empirical analysis that can be undertaken.Comment: 10 page

    On the emergent Semantic Web and overlooked issues

    Get PDF
    The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues

    Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    No full text
    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.This work was supported by Australian Research Council DP1097170; Parks Victoria; and Victorian Department of Sustainability and Environment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Interacting factors driving a major loss of large trees with cavities in a forest ecosystem

    Get PDF
    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia - forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands <= 72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide

    Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates

    Get PDF
    AbstractWe describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2–7 days post-challenge. All naïve macaques had detectable viral RNA from day 2–10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10–30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further development of a tetravalent EDIII-E2 dengue vaccine

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using time–intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the time– intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio
    corecore