7 research outputs found

    The Timing of Application and Inclusion of a Surfactant Are Important for Absorption and Translocation of Foliar Phosphoric Acid by Wheat Leaves

    Get PDF
    Published: 22 November 2019Introduction: Foliar applied phosphorus (P) has the potential to provide a more tactical approach to P fertilization that could enhance P use efficiency. The aims of this study were to investigate the influence of adjuvant choice and application timing of foliar applied phosphoric acid on leaf wettability, foliar uptake, translocation, and grain yield of wheat plants. Materials and Methods: We measured the contact angles of water and fertilizers on wheat leaves, and the uptake, translocation and wheat yield response to isotopicallylabelled phosphoric acid in combination with five different adjuvants when foliar-applied to wheat at either early tillering or flag leaf emergence. Results: There was high foliar uptake of phosphoric acid in combination with all adjuvants that contained a surfactant, but only one treatment resulted in a 12% increase in grain yield and two treatments resulted in a decrease in grain yield. Despite the wettability of all foliar fertilizers being markedly different, foliar uptake was similar for all treatments that contained a surfactant. The translocation of phosphorus from foliar sources was higher when applied at a later growth stage than when applied at tillering despite the leaf surface properties that affect wettability being similar across all leaves at both growth stages. Discussion: Both the timing of foliar application and the inclusion of a surfactant in the formulation are important for absorption and translocation of phosphoric acid by wheat leaves, however high foliar uptake and translocation will not always translate to a yield increase.Courtney A. E. Peirce, Therese M. McBeath, Craig Priest and Michael J. McLaughli

    Improving water productivity in the Australian Grains industry—a nationally coordinated approach

    Get PDF
    Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale

    Soil phosphorus pools with addition of fertiliser phosphorus in a long-term grazing experiment

    No full text
    Published Online 8 November 2019Grasslands are a globally important use of land for food and fibre production, which often require the addition of phosphorus (P) fertiliser to maximise plant production. However, a large proportion of the added P can accumulate in pools of poorly available inorganic and organic P in the surface soil layer under grasslands. The aim of this study was to identify the chemical nature of the organic P in soils from a long-term fertiliser by grazing permanent pasture experiment that have received varying additions of phosphatic fertiliser (cumulative P input of 27, 169, 311, 513, 745 and 1035 kg P ha⁻¹) over a period of 37 years. The design of the experiment uniquely provides insight into the response of soil organic P to the addition of fertiliser P on the decadal scale. On average, 46% of the added fertiliser P was recovered as total P in the 0–100 mm soil layer after 37 years of phosphate addition. The content of both inorganic and organic forms of soil P increased with the addition of fertiliser P. The accumulation of organic P increased linearly up to a cumulative P input of 745 kg P ha⁻¹ and plateaued thereafter. The majority of organic P in all treatments was detected as a broad signal in the phosphomonoester region of solution ³¹P nuclear magnetic resonance (NMR) spectra; this also accounted for 79% of the accumulated organic P in fertilised soil. Our results indicate that accumulation of P in the organic portion as complex forms eventually reaches a new equilibrium where no net accumulation would be expected with further addition of phosphate.Timothy I. McLaren, Ronald J. Smernik, Michael J. McLaughlin, Therese M. McBeath, Malcolm R. McCaskill, Fiona A. Robertson, Richard J. Simpso
    corecore