168 research outputs found
Physiological evidence consistent with reduced neuroplasticity in human adolescents born preterm
Preterm-born children commonly experience motor, cognitive, and learning difficulties that may be accompanied by altered brain microstructure, connectivity, and neurochemistry. However, the mechanisms linking the altered neurophysiology with the behavioral outcomes are unknown. Here we provide the first physiological evidence that human adolescents born preterm at or before 37 weeks of completed gestation have a significantly reduced capacity for cortical neuroplasticity, the key overall mechanism underlying learning and memory. We examined motor cortex neuroplasticity in three groups of adolescents who were born after gestations of â€32 completed weeks (early preterm), 33â37 weeks (late preterm), and 38â41 weeks (term) using a noninvasive transcranial magnetic brain stimulation technique to induce long-term depression (LTD)-like neuroplasticity. Compared with term-born adolescents, both early and late preterm adolescents had reduced LTD-like neuroplasticity in response to brain stimulation that was also associated with low salivary cortisol levels. We also compared neuroplasticity in term-born adolescents with that in term-born young adults, finding that the motor cortex retains a relatively enhanced neuroplastic capacity in adolescence. These findings provide a possible mechanistic link between the altered brain physiology of preterm birth and the subsequent associated behavioral deficits, particularly in learning and memory. They also suggest that altered hypothalamicâpituitaryâadrenal axis function due to preterm birth may be a significant modulator of this altered neuroplasticity. This latter finding may offer options in the development of possible therapeutic interventions
A Statistical Approach to Multifield Inflation: Many-field Perturbations Beyond Slow Roll
We study multifield contributions to the scalar power spectrum in an ensemble
of six-field inflationary models obtained in string theory. We identify
examples in which inflation occurs by chance, near an approximate inflection
point, and we compute the primordial perturbations numerically, both exactly
and using an array of truncated models. The scalar mass spectrum and the number
of fluctuating fields are accurately described by a simple random matrix model.
During the approach to the inflection point, bending trajectories and
violations of slow roll are commonplace, and 'many-field' effects, in which
three or more fields influence the perturbations, are often important. However,
in a large fraction of models consistent with constraints on the tilt the
signatures of multifield evolution occur on unobservably large scales. Our
scenario is a concrete microphysical realization of quasi-single-field
inflation, with scalar masses of order , but the cubic and quartic couplings
are typically too small to produce detectable non-Gaussianity. We argue that
our results are characteristic of a broader class of models arising from
multifield potentials that are natural in the Wilsonian sense.Comment: 39 pages, 17 figures. References added. Matches version published in
JCA
The inflationary bispectrum with curved field-space
We compute the covariant three-point function near horizon-crossing for a
system of slowly-rolling scalar fields during an inflationary epoch, allowing
for an arbitrary field-space metric. We show explicitly how to compute its
subsequent evolution using a covariantized version of the separate universe or
"delta-N" expansion, which must be augmented by terms measuring curvature of
the field-space manifold, and give the nonlinear gauge transformation to the
comoving curvature perturbation. Nonlinearities induced by the field-space
curvature terms are a new and potentially significant source of
non-Gaussianity. We show how inflationary models with non-minimal coupling to
the spacetime Ricci scalar can be accommodated within this framework. This
yields a simple toolkit allowing the bispectrum to be computed in models with
non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference
Spin, charge and orbital ordering in ferrimagnetic insulator YBaMnO
The oxygen-deficient (double) perovskite YBaMnO, containing
corner-linked MnO square pyramids, is found to exhibit ferrimagnetic
ordering in its ground state. In the present work we report
generalized-gradient-corrected, relativistic first-principles full-potential
density-functional calculations performed on YBaMnO in the nonmagnetic,
ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings
are explained with site-, angular momentum- and orbital-projected density of
states, charge-density plots, electronic structure and total energy studies.
YBaMnO is found to stabilize in a G-type ferrimagnetic state in
accordance with experimental results. The experimentally observed insulating
behavior appears only when we include ferrimagnetic ordering in our
calculation. We observed significant optical anisotropy in this material
originating from the combined effect of ferrimagnetic ordering and crystal
field splitting. In order to gain knowledge about the presence of different
valence states for Mn in YBaMnO we have calculated -edge x-ray
absorption near-edge spectra for the Mn and O atoms. The presence of the
different valence states for Mn is clearly established from the x-ray
absorption near-edge spectra, hyperfine field parameters and the magnetic
properties study. Among the experimentally proposed structures, the recently
reported description based on 4/ is found to represent the stable
structure
Making things happen : a model of proactive motivation
Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within oneâs work environment, improving the organizationâs internal functioning, or enhancing the organizationâs strategic fit with its environment) and whether the self or situation is being changed. The authors then identify âcan do,â âreason to,â and âenergized toâ motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
Increased Striatal Presynaptic Dopamine in a Nonhuman Primate Model of Maternal Immune Activation: A Longitudinal Neurodevelopmental Positron Emission Tomography Study With Implications for Schizophrenia
Background: Epidemiological studies suggest that maternal immune activation (MIA) is a significant risk factor for future neurodevelopmental disorders, including schizophrenia (SZ), in offspring. Consistent with findings in SZ research and work in rodent systems, preliminary cross-sectional findings in nonhuman primates suggest that MIA is associated with dopaminergic hyperfunction in young adult offspring. Methods: In this unique prospective longitudinal study, we used [18F]fluoro-l-m-tyrosine positron emission tomography to examine the developmental time course of striatal presynaptic dopamine synthesis in male rhesus monkeys born to dams (n = 13) injected with a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid [poly(I:C)], in the late first trimester. Striatal (caudate, putamen, and nucleus accumbens) dopamine from these animals was compared with that of control offspring born to dams that received saline (n = 10) or no injection (n = 4). Dopamine was measured at 15, 26, 38, and 48 months of age. Prior work with this cohort found decreased prefrontal gray matter volume in MIA offspring versus controls between 6 and 45 months of age. Based on theories of the etiology and development of SZ-related pathology, we hypothesized that there would be a delayed (relative to the gray matter decrease) increase in striatal fluoro-l-m-tyrosine signal in the MIA group versus controls. Results: [18F]fluoro-l-m-tyrosine signal showed developmental increases in both groups in the caudate and putamen. Group comparisons revealed significantly greater caudate dopaminergic signal in the MIA group at 26 months. Conclusions: These findings are highly relevant to the known pathophysiology of SZ and highlight the translational relevance of the MIA model in understanding mechanisms by which MIA during pregnancy increases risk for later illness in offspring
Cosmological perturbations in SFT inspired non-local scalar field models
We study cosmological perturbations in models with a single non-local scalar
field originating from the string field theory description of the rolling
tachyon dynamics. We construct the equation for the energy density
perturbations of the non-local scalar field and explicitly prove that for the
free field it is identical to a system of local cosmological perturbation
equations in a particular model with multiple (maybe infinitely many) local
free scalar fields.Comment: 21 pages, no figures, v3: presentation improved, results unchanged,
references adde
- âŠ