28 research outputs found

    Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase. Corrigendum

    Get PDF
    A corrigendum to the article by Hu et al. (2005), Acta Cryst. F61, 486ā€“488

    Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica

    Get PDF
    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3ā€²-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment

    Allosteric Inhibition of NAD +

    No full text

    Complete nucleotide sequence of the Escherichia coli

    No full text

    Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase

    No full text
    Yeast NAD+-isocitrate dehydrogenase has been purified and crystallized using sodium citrate, a competitive inhibitor of the enzyme, as a precipitant. Preliminary X-ray analyses indicate the molecular boundaries of the molecule and large continuous solvent channels in the crystal

    Modulation of Citrate Metabolism Alters Aluminum Tolerance in Yeast and Transgenic Canola Overexpressing a Mitochondrial Citrate Synthase

    No full text
    Aluminum (Al) toxicity is a major constraint for crop production in acid soils, although crop cultivars vary in their tolerance to Al. We have investigated the potential role of citrate in mediating Al tolerance in Al-sensitive yeast (Saccharomyces cerevisiae; MMYO11) and canola (Brassica napus cv Westar). Yeast disruption mutants defective in genes encoding tricarboxylic acid cycle enzymes, both upstream (citrate synthase [CS]) and downstream (aconitase [ACO] and isocitrate dehydrogenase [IDH]) of citrate, showed altered levels of Al tolerance. A triple mutant of CS (Ī”cit123) showed lower levels of citrate accumulation and reduced Al tolerance, whereas Ī”aco1- and Ī”idh12-deficient mutants showed higher accumulation of citrate and increased levels of Al tolerance. Overexpression of a mitochondrial CS (CIT1) in MMYO11 resulted in a 2- to 3-fold increase in citrate levels, and the transformants showed enhanced Al tolerance. A gene for Arabidopsis mitochondrial CS was overexpressed in canola using an Agrobacterium tumefaciens-mediated system. Increased levels of CS gene expression and enhanced CS activity were observed in transgenic lines compared with the wild type. Root growth experiments revealed that transgenic lines have enhanced levels of Al tolerance. The transgenic lines showed enhanced levels of cellular shoot citrate and a 2-fold increase in citrate exudation when exposed to 150 Ī¼m Al. Our work with yeast and transgenic canola clearly suggest that modulation of different enzymes involved in citrate synthesis and turnover (malate dehydrogenase, CS, ACO, and IDH) could be considered as potential targets of gene manipulation to understand the role of citrate metabolism in mediating Al tolerance
    corecore