1,252 research outputs found

    Model Selection and Testing of Conditional and Stochastic Volatility Models

    Get PDF
    This paper focuses on the selection and comparison of alternative non-nested volatility models. We review the traditional in-sample methods commonly applied in the volatility framework, namely diagnostic checking procedures, information criteria, and conditions for the existence of moments and asymptotic theory, as well as the out-of-sample model selection approaches, such as mean squared error and Model Confidence Set approaches. The paper develops some innovative loss functions which are based on Value-at-Risk forecasts. Finally, we present an empirical application based on simple univariate volatility models, namely GARCH, GJR, EGARCH, and Stochastic Volatility that are widely used to capture asymmetry and leverage.asymmetry, leverage;model confidence set;non-nested models;volatility model comparison;volatility model selection;Value-at-Risk forecasts

    Ranking multivariate GARCH models by problem dimension

    Get PDF
    In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC) of Aeilli (2008), CCC of Bollerslev (1990), Exponentially Weighted Moving Average, and covariance shrinking of Ledoit and Wolf (2004), using the historical data of 89 US equities. Our methods follow some of the approach described in Patton and Sheppard (2009), and contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC model and covariance shrinking. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Weighted Likelihood Ratio test of Amisano and Giacomini (2007). Third, we examine how the model rankings are influenced by the cross-sectional dimension of the problem.MGARCH;covariance forecasting;model comparison;model confidence set;model ranking

    Simplicity, scientific inference and econometric modelling

    Get PDF
    Economic Schools;Econometric Models;Economic Methodology

    Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models

    Get PDF
    The management and monitoring of very large portfolios of financial assets are routine for many individuals and organizations. The two most widely used models of conditional covariances and correlations in the class of multivariate GARCH models are BEKK and DCC. It is well known that BEKK suffers from the archetypal “curse of dimensionalityâ€, whereas DCC does not. It is argued in this paper that this is a misleading interpretation of the suitability of the two models for use in practice. The primary purpose of this paper is to analyze the similarities and dissimilarities between BEKK and DCC, both with and without targeting, on the basis of the structural derivation of the models, the availability of analytical forms for the sufficient conditions for existence of moments, sufficient conditions for consistency and asymptotic normality of the appropriate estimators, and computational tractability for ultra large numbers of financial assets. Based on theoretical considerations, the paper sheds light on how to discriminate between BEKK and DCC in practical applications.forecasting;conditional correlations;Hadamard models;conditional covariances;diagonal models;generalized models;scalar models;targeting

    Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation

    Get PDF
    In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared inthe literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of models, namely BEKK, DCC, Corrected DCC (cDCC) of Aeilli (2008), CCC, Exponentially Weighted Moving Average, and covariance shrinking, using historical data of 89 US equities. Our methods follow part of the approach described in Patton and Sheppard (2009), and the paper contributes to the literature in several directions. First, we consider a wide range of models, including the recent cDCC model and covariance shrinking. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Weighted Likelihood Ratio test of Amisano and Giacomini (2007). Third, we examine how the model rankings are influenced by the cross-sectional dimension of the problem.MGARCH;covariance forecasting;model comparison;model confidence set;model ranking

    Modelling and Forecasting Noisy Realized Volatility

    Get PDF
    Several methods have recently been proposed in the ultra high frequency financial literature to remove the effects of microstructure noise and to obtain consistent estimates of the integrated volatility (IV) as a measure of ex-post daily volatility. Even bias-corrected and consistent realized volatility (RV) estimates of IV can contain residual microstructure noise and other measurement errors. Such noise is called “realized volatility errorâ€. Since such errors are ignored, we need to take account of them in estimating and forecasting IV. This paper investigates through Monte Carlo simulations the effects of RV errors on estimating and forecasting IV with RV data. It is found that: (i) neglecting RV errors can lead to serious bias in estimators; (ii) the effects of RV errors on one-step ahead forecasts are minor when consistent estimators are used and when the number of intraday observations is large; and (iii) even the partially corrected recently proposed in the literature should be fully corrected for evaluating forecasts. This paper proposes a full correction of . An empirical example for S&P 500 data is used to demonstrate the techniques developed in the paper.forecasting;diffusion;financial econometrics;goodness-of-fit;measurement errors;model evaluation;realized volatility
    • …
    corecore