15 research outputs found

    Double-resonant fast particle-wave interaction

    Get PDF
    In future fusion devices fast particles must be well confined in order to transfer their energy to the background plasma. Magnetohydrodynamic instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both driven by fast particles, can lead to significant losses. This is observed in many ASDEX Upgrade discharges. The present study applies the drift-kinetic HAGIS code with the aim of understanding the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Of particular interest is the resonant interaction of particles simultaneously with two different modes, referred to as 'double-resonance'. Various mode overlapping scenarios with different q profiles are considered. It is found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the contrary is found: small radial mode distances can lead to strong nonlinear mode stabilization of a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012

    Static and high-rate loading of single and multi-bolt carbon-epoxy aircraft fuselage joints

    Get PDF
    Single-lap shear behaviour of carbon epoxy composite bolted aircraft fuselage joints at quasi-static and dynamic (5 m/s and 10 m/s) loading speeds is studied experimentally. Single and multi-bolt joints with countersunk fasteners were tested. The initial joint failure mode was bearing, while final failure was either due to fastener pull-through or fastener fracture at a thread. Much less hole bearing damage, and hence energy absorption, occurred when the fastener(s) fractured at a thread, which occurred most frequently in thick joints and in quasi-static tests. Fastener failure thus requires special consideration in designing crashworthy fastened composite structures; if it can be delayed, energy absorption is greater. A correlation between energy absorption in multi-bolt and single-bolt joint tests indicates potential to downsize future test programmes. Tapering a thin fuselage panel layup to a thicker layup at the countersunk hole proved highly effective in achieving satisfactory joint strength and energy absorption
    corecore