4 research outputs found

    Association of antibodies to Plasmodium falciparum merozoite surface protein-4 with protection against clinical malaria

    No full text
    Identification of parasite antigens targeted by immune effector mechanisms that confer protection against malaria is important for the design of a multi-component malaria vaccine. Here, the association of antibodies reacting with the Plasmodium falciparum merozoite surface protein-4 (MSP4) with protection against clinical malaria was investigated in a Senegalese community living in an area of moderate, seasonal malaria transmission. Blood samples were collected at the end of an 8-month long dry season without any recorded parasite transmission from 206 residents enrolled in a prospective follow-up study. Active daily clinical monitoring was implemented during the subsequent five months. Entomologic monitoring documented parasite transmission during the first three months of follow-up. Serum IgG levels were determined by ELISA against three MSP4 baculovirus-encoded recombinant protein constructs, namely the full-length MSP4p40, MSP4p30 devoid of a highly polymorphic sequence stretch and the conserved C-terminal EGF-containing MSP4p20, as well as against a merozoite crude extract. Community seroprevalence against all three constructs was quite high, the lowest being against MSP4p30. Seroprevalence and antibody levels against the three MSP4 constructs were age-dependent. IgG1 dominated the anti-MSP4p20 responses, while both IgG1 and IgG3 were observed against MSP4p40. Anti-MSP4 antibodies were associated with the antibody-dependent respiratory burst (ADRB) activity in a functional assay of merozoite phagocytosis by polymorphonuclear cells. Importantly, high antibody levels against each of the three MSP4 constructs at the end of the dry season were associated with reduced morbidity during the subsequent transmission season in an age-adjusted Poisson regression model (IRR = 0.65 [0.50-0.83], P < 0.001 for responses over the median values). These data are consistent with a protective role for the naturally acquired anti-MSP4 antibodies and support further development of MSP4 as a candidate component of malaria vaccine

    Antibodies to Plasmodium falciparum merozoite surface protein-1p19 malaria vaccine candidate induce antibody-dependent respiratory burst in human neutrophils

    Get PDF
    Background: Identification of plasmodial antigens targeted by protective immune mechanisms is important for malaria vaccine development. Among functional assays, the neutrophil antibody-dependent respiratory burst (ADRB) induced by opsonized Plasmodium falciparum merozoites has been correlated with acquired immunity to clinical malaria in endemic areas, but the target merozoite antigens are unknown. Here, the contribution of antibodies to the conserved C-terminal domain of the P. falciparum merozoite surface protein-1 (PfMSP1p19) in mediating ADRB was investigated in sera from individuals living in two Senegalese villages with differing malaria endemicity. Methods: Anti-PfMSP1p19 antibody levels in sera from 233 villagers were investigated and the involvement of anti-PfMSP1p19 antibodies in ADRB was explored in a subset of samples using (1) isogenic P. falciparum parasite clones expressing P. falciparum or Plasmodium chabaudi MSP1p19; (2) PfMSP1p19-coated plaque ADRB; and, (3) ADRB triggering using sera depleted from PfMSP1p19 antibodies by absorption onto the baculovirus recombinant antigen. Results: ADRB activity correlated with anti-PfMSP1p19 IgG levels (P < 10(-3)). A substantial contribution of PfMSP1p19 antibody responses to ADRB was confirmed (P < 10(-4)) in an age-adjusted linear regression model. PfMSP1p19 antibodies accounted for 33.1 % (range 7-54 %) and 33.2 % (range 0-70 %) of ADRB activity evaluated using isogenic merozoites (P < 10(-3)) and depleted sera (P = 0.0017), respectively. Coating of PfMSP1p19 on plates induced strong ADRB in anti-PfMSP1p19-positive sera. Conclusion: These data show that naturally acquired P. falciparum MSP1p19 antibodies are potent inducers of neutrophil ADRB and support the development of PfMSP1p19-based malaria vaccine using ADRB assay as a functional surrogate for protection
    corecore