10 research outputs found

    Historical and projected trends in nearsurface temperature indices for 22 locations in South Africa

    Get PDF
    Motivated by the risks posed by global warming, historical trends and future projections of near-surface temperature in South Africa have been investigated in a number of previous studies. These studies included the assessment of trends in average temperatures as well as extremes. In this study, historical trends in near-surface minimum and maximum temperatures as well as extreme temperature indices in South Africa were critically investigated by comparing quality-controlled station observations with downscaled model projections. Because climate models are the only means of generating future global warming projections, this critical point comparison between observed and downscaled model simulated time series can provide valuable information regarding the interpretation of model-generated projections. Over the historical 1951–2005 period, both observed data and downscaled model projections were compared at 22 point locations in South Africa. An analysis of model projection trends was conducted over the period 2006–2095. The results from the historical analysis show that model outputs tend to simulate the historical trends well for annual means of daily maximum and minimum temperatures. However, noteworthy discrepancies exist in the assessment of temperature extremes. While both the historical model simulations and observations show a general warming trend in the extreme indices, the observational data show appreciably more spatial and temporal variability. On the other hand, model projections for the period 2006–2095 show that for the medium-to-low concentration Representative Concentration Pathway (RCP) 4.5, the projected decrease in cold nights is not as strong as is the case for the historically observed trends. However, the upward trends in warm nights for both the RCP4.5 and the high concentration RCP8.5 pathways are noticeably stronger than the historically observed trends. For cool days, future projections are comparable to the historically observed trends, but for hot days noticeably higher. Decreases in cold spells and increases in warm spells are expected to continue in future, with relatively strong positive trends on a regional basis. It is shown that projected trends are not expected to be constant into the future, in particular trends generated from the RCP8.5 pathway that show a strong increase in warming towards the end of the projection period. SIGNIFICANCE : ‱ Comparison between the observed and simulated trends emphasises the necessity to assess the reliability of the output of climate models which have a bearing on the credibility of projections. ‱ The limitation of the models to adequately simulate the climate extremes, renders the projections conservative, which is an important result in the light of climate change adaptation.http://www.sajs.co.zaam2019Geography, Geoinformatics and MeteorologySchool of Health Systems and Public Health (SHSPH

    Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought

    No full text
    The variability of temperature and precipitation influenced by El Niño-Southern Oscillation (ENSO) is potentially one of key factors contributing to vegetation product in southern Africa. Thus, understanding large-scale ocean⁻atmospheric phenomena like the ENSO and Indian Ocean Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002⁻2017) of Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE) platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA) model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress. The region in the southern part of the HiP which has land cover dominated by savanna experienced the most impact of the strong El Niño. Both the HiP NDVI inter-annual Mann⁻Kendal trend test and sequential Mann⁻Kendall (SQ-MK) test indicated a significant downward trend during the El Niño years of 2003 and 2014⁻2015. The SQ-MK significant trend turning point which was thought to be associated with the 2014⁻2015 El Niño periods begun in November 2012. The wavelet coherence and coherence phase indicated a positive teleconnection/correlation between soil temperatures, precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship between the NDVI and climatic parameters especially at a period band of 8⁻16 months

    Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel Data within GEE Cloud Platform

    No full text
    Planted forests in South Africa have been affected by an increasing number of economically damaging fires over the past four decades. They constitute a major threat to the forestry industry and account for over 80% of the country’s commercial timber losses. Forest fires are more frequent and severe during the drier drought conditions that are typical in South Africa. For proper forest management, accurate detection and mapping of burned areas are required, yet the exercise is difficult to perform in the field because of time and expense. Now that ready-to-use satellite data are freely accessible in the cloud-based Google Earth Engine (GEE), in this study, we exploit the Sentinel-2-derived differenced normalized burned ratio (dNBR) to characterize burn severity areas, and also track carbon monoxide (CO) plumes using Sentinel-5 following a wildfire that broke over the southeastern coast of the Western Cape province in late October 2018. The results showed that 37.4% of the area was severely burned, and much of it occurred in forested land in the studied area. This was followed by 24.7% of the area that was burned at a moderate-high level. About 15.9% had moderate-low burned severity, whereas 21.9% was slightly burned. Random forests classifier was adopted to separate burned class from unburned and achieved an overall accuracy of over 97%. The most important variables in the classification included texture, NBR, and the NIR bands. The CO signal sharply increased during fire outbreaks and marked the intensity of black carbon over the affected area. Our study contributes to the understanding of forest fire in the dynamics over the Southern Cape forestry landscape. Furthermore, it also demonstrates the usefulness of Sentinel-5 for monitoring CO. Taken together, the Sentinel satellites and GEE offer an effective tool for mapping fires, even in data-poor countries

    Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data

    No full text
    Evapotranspiration (ET) is crucial to the management of water supplies and the functioning of numerous terrestrial ecosystems. To understand and propose planning strategies for water-resource and crop management, it is critical to examine the geo-temporal patterns of ET in drought-prone areas such as the Upper Orange River Basin (UORB) in South Africa. While information on ET changes is computed from directly observed parameters, capturing it through remote sensing is inexpensive, consistent, and feasible at different space–time scales. Here, we employed the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spectral indices within Google Earth Engine (GEE) to analyze and characterize patterns of ET over the UORB from 2003 to 2021, in association with various climatic parameters. Our results show spatially consistent ET patterns with the Vegetation Condition Index (VCI), with lower values in the west, increasing toward the eastern section of the basin, over the Lesotho highlands. We noted that the UORB faced significant variability in ET and VCI during pronounced drought episodes. The random forests (RF) model identified precipitation, temperature, Standardized Precipitation Index (SPI)-6, Palmer Drought Severity Index (PDSI), and VCI as variables of high importance for ET variability, while the wavelet analysis confirmed the coherence connectivity between these variables with periodicities ranging from eight to 32 months, suggesting a strong causal influence on ET, except for PDSI, that showed an erratic relationship. Based on the sequential Mann–Kendall test, we concluded that evapotranspiration has exhibited a statistically downward trend since 2011, which was particularly pronounced during the dry periods in 2015–2016, 2019, and 2021. Our study also confirmed the high capacity of the GEE and MODIS-derived indices in mapping consistent geo-temporal ET patterns

    Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine

    No full text
    South Africa is reported to experience timber shortages as a result of growing timber demands and pulp production, coupled with the government’s reluctance to grant new forestry permits. Rampant timber theft in the country makes these circumstances worse. The emergence of cloud-based platforms, such as Google Earth Engine (GEE), has greatly improved the accessibility and usability of high spatial and temporal Sentinel-1 and -2 data, especially in data-poor countries that lack high-performance computing systems for forest monitoring. Here, we demonstrate the potential of these resources for forest harvest detection. The results showed that Sentinel-1 data are efficient in detecting clear-cut events; both VH and VV backscatter signals decline sharply in accordance with clear-cutting and increase again when forest biomass increases. When correlated with highly responsive NDII, the VH and VV signals reached the best accuracies of 0.79 and 0.83, whereas the SWIR1 achieved –0.91. A Random Forest (RF) algorithm based on Sentinel-2 data also achieved over 90% accuracies for classifying harvested and forested areas. Overall, our study presents a cost-effective method for mapping clear-cut events in an economically important forestry area of South Africa while using GEE resources

    Historical and projected trends in near-surface temperature indices for 22 locations in South Africa

    Get PDF
    Motivated by the risks posed by global warming, historical trends and future projections of near-surface temperature in South Africa have been investigated in a number of previous studies. These studies included the assessment of trends in average temperatures as well as extremes. In this study, historical trends in near-surface minimum and maximum temperatures as well as extreme temperature indices in South Africa were critically investigated by comparing quality-controlled station observations with downscaled model projections. Because climate models are the only means of generating future global warming projections, this critical point comparison between observed and downscaled model simulated time series can provide valuable information regarding the interpretation of model-generated projections. Over the historical 1951–2005 period, both observed data and downscaled model projections were compared at 22 point locations in South Africa. An analysis of model projection trends was conducted over the period 2006–2095. The results from the historical analysis show that model outputs tend to simulate the historical trends well for annual means of daily maximum and minimum temperatures. However, noteworthy discrepancies exist in the assessment of temperature extremes. While both the historical model simulations and observations show a general warming trend in the extreme indices, the observational data show appreciably more spatial and temporal variability. On the other hand, model projections for the period 2006–2095 show that for the medium-to-low concentration Representative Concentration Pathway (RCP) 4.5, the projected decrease in cold nights is not as strong as is the case for the historically observed trends. However, the upward trends in warm nights for both the RCP4.5 and the high concentration RCP8.5 pathways are noticeably stronger than the historically observed trends. For cool days, future projections are comparable to the historically observed trends, but for hot days noticeably higher. Decreases in cold spells and increases in warm spells are expected to continue in future, with relatively strong positive trends on a regional basis. It is shown that projected trends are not expected to be constant into the future, in particular trends generated from the RCP8.5 pathway that show a strong increase in warming towards the end of the projection period. Significance: Comparison between the observed and simulated trends emphasises the necessity to assess the reliability of the output of climate models which have a bearing on the credibility of projections. The limitation of the models to adequately simulate the climate extremes, renders the projections conservative

    Heatwave Variability and Structure in South Africa during Summer Drought

    No full text
    Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change

    Heatwave Variability and Structure in South Africa during Summer Drought

    No full text
    Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change

    Development of an Updated Global Land In Situ‐Based Data Set of Temperature and Precipitation Extremes: HadEX3

    No full text
    We present the second update to a data set of gridded land‐based temperature and precipitation extremes indices: HadEX3. This consists of 17 temperature and 12 precipitation indices derived from daily, in situ observations and recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). These indices have been calculated at around 7,000 locations for temperature and 17,000 for precipitation. The annual (and monthly) indices have been interpolated on a 1.875°×1.25° longitude‐latitude grid, covering 1901–2018. We show changes in these indices by examining ”global”‐average time series in comparison with previous observational data sets and also estimating the uncertainty resulting from the nonuniform distribution of meteorological stations. Both the short and long time scale behavior of HadEX3 agrees well with existing products. Changes in the temperature indices are widespread and consistent with global‐scale warming. The extremes related to daily minimum temperatures are changing faster than the maximum. Spatial changes in the linear trends of precipitation indices over 1950–2018 are less spatially coherent than those for temperature indices. Globally, there are more heavy precipitation events that are also more intense and contribute a greater fraction to the total. Some of the indices use a reference period for calculating exceedance thresholds. We present a comparison between using 1961–1990 and 1981–2010. The differences between the time series of the temperature indices observed over longer time scales are shown to be the result of the interaction of the reference period with a warming climate. The gridded netCDF files and, where possible, underlying station indices are available from www.metoffice.gov.uk/hadobs/hadex3 and www.climdex.org.Robert Dunn was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (GA01101) and thanks Nick Rayner and Lizzie Good for helpful comments on the manuscript. Lisa Alexander is supported by the Australian Research Council (ARC) Grants DP160103439 and CE170100023. Markus Donat acknowledges funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 Grant Reference RYC‐2017‐22964. Mohd Noor'Arifin Bin Hj Yussof and Muhammad Khairul Izzat Bin Ibrahim thank the Brunei Darussalam Meteorological Department (BDMD). Ying Sun was supported by China funding agencies 2018YFA0605604 and 2018YFC1507702. Fatemeh Rahimzadeh and Mahbobeh Khoshkam thank I.R. of Iranian Meteorological Organization (IRIMO) and the Atmospheric Science and Meteorological Organization Research Center (ASMERC) for Data and also sharing their experiences, especially Abbas Rangbar. Jose Marengo was supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014‐1, FAPESP Grants 2014/50848‐9 and 2015/03804‐9, and the National Coordination for High Level Education and Training (CAPES) Grant 88887.136402‐00INCT. The team that worked on the data in West Africa received funding from the UK's National Environment Research Council (NERC)/Department for International Development DFID) Future Climate For Africa programme, under the AMMA‐2050 project (Grants NE/M020428/1 and NE/M019969/1). Data from Southeast Asia (excl. Indonesia) was supported by work on using ClimPACT2 during the Second Workshop on ASEAN Regional Climate Data, Analysis and Projections (ARCDAP‐2), 25–29 March 2019, Singapore, jointly funded by Meteorological Service Singapore and WMO through the Canada‐Climate Risk and Early Warning Systems (CREWS) initiative. This research was supported by Thai Meteorological Department (TMD) and Thailand Science Research and Innovation (TSRI) under Grant RDG6030003. Daily data for Mexico were provided by the Servicio Meteorológico Nacional (SMN) of Comisión Nacional del Agua (CONAGUA). We acknowledge the data providers in the ECA&D project (https://www.ecad.eu), the SACA&D project (https://saca-bmkg.knmi.nl), and the LACA&D project (https://ciifen.knmi.nl). We thank the three anonymous reviewers for their detailed comments which improved the manuscript.Peer ReviewedPostprint (published version

    Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3

    Get PDF
    We present the second update to a data set of gridded land‐based temperature and precipitation extremes indices: HadEX3. This consists of 17 temperature and 12 precipitation indices derived from daily, in situ observations and recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). These indices have been calculated at around 7,000 locations for temperature and 17,000 for precipitation. The annual (and monthly) indices have been interpolated on a 1.875°×1.25° longitude‐latitude grid, covering 1901–2018. We show changes in these indices by examining ”global”‐average time series in comparison with previous observational data sets and also estimating the uncertainty resulting from the nonuniform distribution of meteorological stations. Both the short and long time scale behavior of HadEX3 agrees well with existing products. Changes in the temperature indices are widespread and consistent with global‐scale warming. The extremes related to daily minimum temperatures are changing faster than the maximum. Spatial changes in the linear trends of precipitation indices over 1950–2018 are less spatially coherent than those for temperature indices. Globally, there are more heavy precipitation events that are also more intense and contribute a greater fraction to the total. Some of the indices use a reference period for calculating exceedance thresholds. We present a comparison between using 1961–1990 and 1981–2010. The differences between the time series of the temperature indices observed over longer time scales are shown to be the result of the interaction of the reference period with a warming climate. The gridded netCDF files and, where possible, underlying station indices are available from www.metoffice.gov.uk/hadobs/hadex3 and www.climdex.org.Robert Dunn was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (GA01101) and thanks Nick Rayner and Lizzie Good for helpful comments on the manuscript. Lisa Alexander is supported by the Australian Research Council (ARC) Grants DP160103439 and CE170100023. Markus Donat acknowledges funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 Grant Reference RYC‐2017‐22964. Mohd Noor'Arifin Bin Hj Yussof and Muhammad Khairul Izzat Bin Ibrahim thank the Brunei Darussalam Meteorological Department (BDMD). Ying Sun was supported by China funding agencies 2018YFA0605604 and 2018YFC1507702. Fatemeh Rahimzadeh and Mahbobeh Khoshkam thank I.R. of Iranian Meteorological Organization (IRIMO) and the Atmospheric Science and Meteorological Organization Research Center (ASMERC) for Data and also sharing their experiences, especially Abbas Rangbar. Jose Marengo was supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014‐1, FAPESP Grants 2014/50848‐9 and 2015/03804‐9, and the National Coordination for High Level Education and Training (CAPES) Grant 88887.136402‐00INCT. The team that worked on the data in West Africa received funding from the UK's National Environment Research Council (NERC)/Department for International Development DFID) Future Climate For Africa programme, under the AMMA‐2050 project (Grants NE/M020428/1 and NE/M019969/1). Data from Southeast Asia (excl. Indonesia) was supported by work on using ClimPACT2 during the Second Workshop on ASEAN Regional Climate Data, Analysis and Projections (ARCDAP‐2), 25–29 March 2019, Singapore, jointly funded by Meteorological Service Singapore and WMO through the Canada‐Climate Risk and Early Warning Systems (CREWS) initiative. This research was supported by Thai Meteorological Department (TMD) and Thailand Science Research and Innovation (TSRI) under Grant RDG6030003. Daily data for Mexico were provided by the Servicio Meteorológico Nacional (SMN) of Comisión Nacional del Agua (CONAGUA). We acknowledge the data providers in the ECA&D project (https://www.ecad.eu), the SACA&D project (https://saca-bmkg.knmi.nl), and the LACA&D project (https://ciifen.knmi.nl). We thank the three anonymous reviewers for their detailed comments which improved the manuscript.Peer ReviewedPostprint (published version
    corecore