10 research outputs found

    Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    Get PDF
    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested

    Neutron reflectivity measurement of protein A-antibody complex at the solid-liquid interface

    Get PDF
    Chromatography is a ubiquitous unit operation in the purification of biopharmaceuticals yet few studies have addressed the biophysical characterisation of proteins at the solution-resin interface. Chromatography and other adsorption and desorption processes have been shown to induce protein aggregation which is undesirable in biopharmaceutical products. In order to advance understanding of how adsorption processes might impact protein stability, neutron reflectivity was used to characterise the structure of adsorbed immunoglobulin G (IgG) on model surfaces. In the first model system, IgG was adsorbed directly to silica and demonstrated a side-on orientation with high surface contact. A maximum dimension of 60Ă… in the surface normal direction and high density surface coverage were observed under pH 4.1 conditions. In chromatography buffers, pH was found to influence IgG packing density and orientation at the solid-liquid interface. In the second model system, which was designed to mimic an affinity chromatography surface, protein A was attached to a silica surface to produce a configuration representative of a porous glass chromatography resin. Interfacial structure was probed during sequential stages from ligand attachment, through to IgG binding and elution. Adsorbed IgG structures extended up to 250Ă… away from the surface and showed dependence on surface blocking strategies. The data was suggestive of two IgG molecules bound to protein A with a somewhat skewed orientation and close proximity to the silica surface. The findings provide insight into the orientation of adsorbed antibody structures under conditions encountered during chromatographic separations
    corecore