6 research outputs found

    Super hygroscopic non-stoichiometric cerium oxide particles as electrode component for PEM fuel cells

    Get PDF
    The design of highly efficient promoters for the oxygen reduction reaction (ORR) is an important challenge in the large-scale distribution of proton exchange membrane (PEM) fuel cells. Hygroscopic cerium oxide (CeO2) is here proposed as co-catalyst in combination with Pt. Physical chemical characterizations, by means of X-ray diffraction, vibrational spectroscopy, morphological and thermal analyses, were carried out, demonstrating high water affinity of the synthesized CeO2 nanoparticles. Composite catalysts (i. e., Pt : CeO2 1 : 0.5 and 1 : 1 wt:wt), were studied by either rotating disk electrode (RDE) and fuel cell tests performed at 80 °C and 110 °C. Interestingly, the cell adopting the Pt : CeO2 1 : 0.5 catalyst enabled the achievement of high power densities reaching ∼80 and ∼35 mW cm−2 under low relative humidity and high temperatures. This result demonstrates that tuning material surface properties (e. g. oxygen vacancies) could significantly boost the electrochemical performance of cathodes as a combined result of optimized water retention and improved ORR kinetic

    Extraction of emerging contaminants from environmental waters and urine by dispersive liquid-liquid microextraction with solidification of the floating organic droplet using fenchol:acetic acid deep eutectic mixtures

    Get PDF
    In this work, several eutectic mixtures formed by fenchol and acetic acid at seven molar ratios (between 4:1 and 1:4) were characterized and studied for the first time for their possible application as extraction solvents in dispersive liquid-liquid microextraction based on the solidification of the floating organic droplet (DLLME-SFO). A group of 13 emerging contaminants (gemfibrozil, bisphenol F, bisphenol A, 17β-estradiol, testosterone, estrone, levonorgestrel, 4-tert-octylphenol, butyl benzyl phthalate, dibutyl phthalate, 4-octylphenol, 4-nonylphenol, and dihexyl phthalate) was selected and determined by liquid chromatography with ultraviolet and tandem mass spectrometry detection. Among the studied mixtures, only those of 2:1 and 1:1 provided the suitable features from an operational and repeatability point of view, suggesting that several eutectic mixtures of the same components may also provide similar results. Once the extraction conditions of both mixtures were optimized, the method was applied to the extraction of sea water, urine, and wastewater at different concentration levels, allowing the achievement of absolute recovery values between 49 and 100% for most analytes with relative standard deviation values below 19%. In addition, several samples of each type were analyzed, finding bisphenol A and gemfibrozil in some of them. The greenness of the method was also evaluated using the AGREEprep metric. The DLLME-SFO procedure was found to be very simple, quick, and effective and with a good sample throughput

    Titanium-Based Tetrakis-2,3-[5,6-di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization

    Get PDF
    Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions

    Composite nafion membranes with catio3additive for possible applications in electrochemical devices

    No full text
    A composite membrane based on a Nafion polymer matrix incorporating a non-stoichiometric calcium titanium oxide (CaTiO3−δ) additive was synthesized and characterized by means of thermal analysis, dynamic mechanical analysis, and broadband dielectric spectroscopy at different filler contents; namely two concentrations of 5 and 10 wt.% of the CaTiO3−δ additive, with respect to the dry Nafion content, were considered. The membrane with the lower amount of additive displayed the highest water affinity and the highest conductivity, indicating that a too-high dose of additive can be detrimental for these particular properties. The mechanical properties of the composite membranes are similar to those of the plain Nafion membrane and are even slightly improved by the filler addition. These findings indicate that perovskite oxides can be useful as a water-retention and reinforcing additive in low-humidity proton-exchange membranes

    Chemically stabilised extruded and recast short side chain Aquivion ® proton exchange membranes for high current density operation in water electrolysis

    No full text
    Membrane-electrode assemblies based on chemically stabilised short-side-chain proton exchange Aquivion ® membranes, prepared by extrusion or recast methods, have been investigated for operation at high current density (3–4 A cm −2 ) in water electrolysis cells. A thickness of 90 μm was selected for these perfluorosulfonic acid membranes in order to provide proper resilience to hydrogen crossover under differential pressure operation while allowing operation at high currents. The membranes showed proper mechanical strength for high-pressure operation and suitable conductivity to reduce ohmic losses at high current densities. Both membranes showed excellent performance in electrolysis cells by achieving a voltage efficiency better than 85% and 80% (1.85 V) at 3 and 4 A cm −2 , respectively, in polarisation curves at 90 °C. A smaller surface roughness was observed from atomic force microscopy for the recast membrane compared to the extruded one. This may affect the intimate contact between the ionic clusters of the membrane and the catalyst agglomerate at the interface producing a catalytic enhancement in the activation region of the polarisation curves in the case of the recast membrane. At high cell voltages, the polarisation resistance was instead slightly lower for the cell based on the extruded membrane. Interestingly, the different characteristics of the membrane-electrodes interface produced lower recoverable losses in durability studies for the recast membrane-based electrolyser allowing stable operation at both 3 and 4 A cm −2 . Hydrogen crossover analysis at a differential pressure of 20 bar showed low gas permeation through both membranes allowing for a wide load range (15–100%) and high faradaic efficiency >99% at practical current densities (1–4 A cm −2 )
    corecore