115 research outputs found
High Spectral Efficiency Fiber-Optic Transmission Systems Using Pilot Tones
Modern fiber-optic communication systems combine state-of-the-art components with powerful digital signal processing (DSP) to maximize the system spectral efficiency (SE). Systems rely on wavelength-division multiplexing, including superchannel transmission, to enable transmission over the available bandwidth which reaches about 10 THz when accounting for the so-called C and L bands. A superchannel is a set of densely packed wavelength channels viewed as a single unit. By treating the channels together, they can be packed more closely than what is normally feasible and sharing of resources among the channels within the superchannel can be considered. In this thesis we focus on the special case of superchannels formed using coherent optical frequency combs. A frequency comb is a multi-wavelength light source and comb-based superchannels consists of channels which are modulated on lines originating from a common comb. Frequency combs have phase-locked carriers, meaning that in contrast to the standard case of independent lasers, the channels within a comb-based superchannel are locked on a frequency grid. Moreover, it implies that the carrier offsets originating from a non-ideal laser source are shared among all comb lines.Shared carrier offsets can be exploited to reduce the complexity of the DSP used to effectively recover the data. A frequency comb is fully characterized by knowing the state of two of its lines, meaning that if this information is transferred to the receiver, one could compensate carrier offsets for all wavelength channels within the superchannel. By transmission of optical pilot tones, self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel is demonstrated with 4% spectral overhead. While two tones are required to fully phase-lock two combs, a single tone is enough to enable significant relaxation of the DSP-requirements while at the same time requiring minimal additional complexity compared to standard intradyne systems. Superchannel transmission using a single shared pilot tone is demonstrated by transmission of a 51x24Gbaud PM-128QAM superchannel with a resulting SE of 10.3bits/s/Hz. The single pilot scheme is also evaluated for distances up to 1000km showing high robustness to both noise and fiber nonlinearities. Finally, the high gain low overhead combination of the single pilot-tone scheme was used in a record demonstration reaching a SE of 11.5bits/s/Hz for fully loaded C-band transmission
High spectral efficiency transmission using optical frequency combs
Modern long-haul optical communication systems transmit data on all available single-mode fiber dimensions, time, polarization, wavelength, phase and amplitude. Powerful digital signal processing and forward error correction has pushed the per-channel throughput towards its theoretical limits and the bandwidth is limited by the erbium-doped fiber amplifiers. Maximizing the spectral efficiency (SE), i.e. the throughput normalized to bandwidth, is therefore of indisputable importance. Even more so in optical networks as large routing guard-bands drastically reduce the SE of traditional WDM systems. Flex-grid networks with optical superchannels can overcome this limitation. Superchannels consist of multiple tightly packed WDM channels routed as a unit. A comb-based superchannel is formed by encoding independent information onto lines from an optical frequency comb, a multi-wavelength light source fully determined by its center frequency and line spacing. This thesis studies the generation, transmission and detection of comb-based superchannels. Focus is on profiting from unique frequency comb properties to realize systems with capabilities beyond that of conventional systems using arrays of independent lasers. Digital, analog and optical processing schemes are proposed, and combined, to increase the system SE. Superchannel modulation is investigated and a scheme capable of encoding independent information onto the lines from a frequency comb in a single waveguide structure is demonstrated. By combining overhead-optimized pilot-based DSP with a 22GHz-spaced soliton microcomb, superchannel transmission with record SE for distances up to 3000km is realized, closing the performance gap between chip-scale and bulk-optic combs in optical communications. The use of two optical pilot tones (PTs) to phase-lock a transmitter and receiver comb pair is studied, realizing self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel with 4% pilot overhead. The PT gains are furthermore analyzed and a complexity-performance trade-off using a single PT and low complexity DSP is proposed. The scheme is used to demonstrate 12bits/s/Hz SE over the full C-band using 3x50xGBaud PM-256QAM superchannels and DSP-complexity reduction at distances exceeding 1000km is shown. Finally, a comb-enabled multi-channel joint equalization scheme capable of mitigating inter-channel crosstalk and thereby minimizing the SE loss from spectral guard bands is demonstrated
Joint Superchannel Digital Signal Processing for Effective Inter-Channel Interference Cancellation
Modern optical communication systems transmit multiple frequency channels, each operating very close to its theoretical limit. The total bandwidth can reach 10 THz limited by the optical amplifiers. Maximizing spectral efficiency, the throughput per bandwidth is thus crucial. Replacing independent lasers with an optical frequency comb can enable very dense packing by overcoming relative drifts. However, to date, interference from non-ideal spectral shaping prevents exploiting the full potential of frequency combs. Here, we demonstrate comb-enabled multi-channel digital signal processing, which overcomes these limitations. Each channel is detected using an independent coherent receiver and processed at two samples-per-symbol. By accounting for the unique comb stability and exploiting aliasing in the design of the dynamic equalizer, we show that the optimal spectral shape changes, resulting in a higher signal-to-noise ratio that pushes the optimal symbol rate towards and even above the channel spacing, resulting in the first example of frequency-domain super-Nyquist transmission with multi-channel detection for optical systems. The scheme is verified both in back-to-back configuration and in single span transmission of a 21 channel superchannel originating from a 25 GHz-spaced frequency comb. By jointly processing three wavelength channels at a time, we achieve spectral efficiency beyond what is possible with independent channels. At the same time, one significantly relaxes the hardware requirements on digital-to-analog resolution and bandwidth, as well as filter tap numbers. Our results show that comb-enabled multi-channel processing can overcome the limitations of classical dense wavelength division multiplexing systems, enabling tighter spacing to make better use of the available spectrum in optical communications
Phase-coherent lightwave communications with frequency combs
Fiber-optical networks are a crucial telecommunication infrastructure in
society. Wavelength division multiplexing allows for transmitting parallel data
streams over the fiber bandwidth, and coherent detection enables the use of
sophisticated modulation formats and electronic compensation of signal
impairments. In the future, optical frequency combs may replace multiple lasers
used for the different wavelength channels. We demonstrate two novel signal
processing schemes that take advantage of the broadband phase coherence of
optical frequency combs. This approach allows for a more efficient estimation
and compensation of optical phase noise in coherent communication systems,
which can significantly simplify the signal processing or increase the
transmission performance. With further advances in space division multiplexing
and chip-scale frequency comb sources, these findings pave the way for compact
energy-efficient optical transceivers.Comment: 17 pages, 9 figure
Performance Monitoring for Live Systems with Soft FEC and Multilevel Modulation
Performance monitoring is an essential function for margin measurements in
live systems. Historically, system budgets have been described by the Q-factor
converted from the bit error rate (BER) under binary modulation and direct
detection. The introduction of hard-decision forward error correction (FEC) did
not change this. In recent years technologies have changed significantly to
comprise coherent detection, multilevel modulation and soft FEC. In such
advanced systems, different metrics such as (nomalized) generalized mutual
information (GMI/NGMI) and asymmetric information (ASI) are regarded as being
more reliable. On the other hand, Q budgets are still useful because pre-FEC
BER monitoring is established in industry for live system monitoring.
The pre-FEC BER is easily estimated from available information of the number
of flipped bits in the FEC decoding, which does not require knowledge of the
transmitted bits that are unknown in live systems. Therefore, the use of
metrics like GMI/NGMI/ASI for performance monitoring has not been possible in
live systems. However, in this work we propose a blind soft-performance
estimation method. Based on a histogram of log-likelihood-values without the
knowledge of the transmitted bits, we show how the ASI can be estimated.
We examined the proposed method experimentally for 16 and 64-ary quadrature
amplitude modulation (QAM) and probabilistically shaped 16, 64, and 256-QAM in
recirculating loop experiments. We see a relative error of 3.6%, which
corresponds to around 0.5 dB signal-to-noise ratio difference for binary
modulation, in the regime where the ASI is larger than the assumed FEC
threshold. For this proposed method, the digital signal processing circuitry
requires only a minimal additional function of storing the L-value histograms
before the soft-decision FEC decoder.Comment: 9 pages, 9 figure
Overhead-optimization of pilot-based digital signal processing for flexible high spectral efficiency transmission
We present a low-complexity fully pilot-based digital signal processing (DSP) chain designed for high spectral efficiency optical transmission systems. We study the performance of the individual pilot algorithms in simulations before demonstrating transmission of a 51
724 Gbaud PM-64QAM superchannel over distances reaching 1000 km. We present an overhead optimization technique using the system achievable information rate to find the optimal balance between increased performance and throughput reduction from adding additional DSP pilots. Using the optimal overhead of 2.4%, we report 9.3 (8.3) bits/s/Hz spectral efficiency, or equivalently 11.9 (10.6) Tb/s superchannel throughput, after 480 (960) km of transmission over 80 km spans with EDFA-only amplification. Moreover, we show that the optimum overhead depends only weakly on transmission distance, concluding that back-to-back optimization is sufficient for all studied distances. Our results show that pilot-based DSP combined with overhead optimization can increase the robustness and performance of systems using advanced modulation formats while still maintaining state-of-the-art spectral efficiency and multi-Tb/s throughput
11.5 bits/s/Hz PM-256QAM Comb-Based Superchannel Transmission by Combining Optical and Digital Pilots
We demonstrate 44 Tb/s transmission using three 50x24 Gbaud PM-256QAM comb-based superchannels. Each superchannel combines a single optical pilot tone with individual digital pilot symbols to minimize the total overhead, enabling record spectral-efficiency over the full C-band
Comparison of uniform cross QAM and probabilistically shaped QAM formats under the impact of transmitter impairments
Considering the nonideal response of Mach-Zehnder modulators, uniform cross QAM constellations improve upon probabilistically shaped QAM by a factor of up to 4 in uncoded symbol error rate and also offer higher achievable information rates, at the same source entropy and optimal electrical signal powers
- …