10 research outputs found

    Quantifying the environmental burdens of the hot mix asphalt (HMA) pavements and the production of warm mix asphalt (WMA)

    Get PDF
    AbstractAsphalt pavement has significant environmental burdens throughout its life cycle. A life cycle assessment (LCA) model is used to quantify the environmental burdens for material, construction, maintenance and use phases of hot mix asphalt (HMA) pavement. Two peer reviewed journals have been used to collect all of the inventory loadings as an input for the LCA model and ten impact categories have been evaluated as output. The result of the inventory analysis is a summary of all inflows and outflows related to the “functional unit”. The result of each impact category is the total of all the individually characterized inventory loadings in each category. Each life cycle phase of HMA pavement has been quantified on these ten impact categories and a comparison provided among the phases to understand the percentage contribution to the environment. Human and eco toxicity values are higher for the material phase, whereas the rest of the impact categories are significant in the use phase. The material phase contributes 97% of the overall human toxicity in water from standpoint of asphalt pavements, whereas in the material phase the production of bitumen is responsible for 90% human and eco toxicity in terms of air based burden. As a solution, the life cycle inventory of WMA has been estimated and reduction only done in HMA production. From analysis, it was estimated that WMA provides a reduction of 29% on the acidification impact and 25% reduction on both fossil fuel consumption and photo oxidant formation impact of HMA

    Cost-Effectiveness of Conventional Compaction (CC) and Intelligent Compaction (IC) Methods of Asphalt Pavement Overlay

    No full text
    The use of intelligent compaction (IC) in asphalt overlay includes the use of double-drum IC rollers, a roller measurement system, global position system (GPS) radio/receiver/base station, infrared temperature sensors, and an onboard computer reporting system. GPS based mapping and optional feedback control help to overcome the drawbacks associated with conventional compaction such as identifying soft spots, achieving consistent roller patterns, and monitoring asphalt surface temperature and levels of compaction with adequate quality control or quality assurance (QC/QA). Cost-effectiveness of both compaction types was measured in terms of initial and roadway lifecycle cost based on the cost inputs received from South Korea and other published literatures. Roadway lifecycle cost was reported based on the improvement in in-place density, smoothness, and fatigue life. The results of this study showed that: (1) with IC an approximate 4.1% initial cost reduction can be achieved compared to conventional compaction; (2) QC/QA cost is found to have the most significant effect on the higher initial cost of conventional compaction compared to other associated costs whereas intelligent roller cost is the vital cost category for IC; (3) improvement of in-place air voids and density due to the IC has shown that at 97% field density (or at 3% air void content) the State Highway Agency can save approximately 44% over a 20-year service period; and (4) agency cost is observed to be reduced by approximately 62% with the IC method based on the 25-year analysis period due to the increase in fatigue life

    Performance properties of polymer modified asphalt binders containing wax additives

    Get PDF
    The study presents an experimental evaluation of the rheological properties of control and polymer modified asphalt (PMA) binders containing wax additives and a comprehensive comparison between these two binder types. The control and PMA binders with the additives were produced using two of the available warm asphalt processes (i.e., LEADCAP and Sasobit) and then artificially short-term and long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were carried out on the binders through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). In general the results of this study indicated that (1) the addition of wax additives into the control and PMA binders decreases the viscosity, as expected; (2) the reduction rate of viscosity was quite similar for both the binders with wax additives; (3) the percentage increase of rutting resistance due to the additives was much higher for the control binder, compared to the PMA binder; (4) both the control and PMA binders showed the similar trends in terms of fatigue cracking and low temperature cracking behavior after the addition of wax additives. Keywords: PMA, Wax additives, Viscosity, Rutting, Fatigue cracking, Stiffnes

    Optical Characterization of Asphalt Binders Containing Wax Additives

    No full text
    In between thermal-oxidative (heat and oxygen) and photo-oxidative (ultraviolet irradiation and oxygen) aging process of bitumen, photo-oxidative aging mainly depends on the optical properties of the asphalt binder. The higher the reflection (or the lower the absorption of the binders), the better the pavement serviceability. The literature review indicates that there is limited research conducted on the optical properties of the binder with wax additives. In this paper, the optical properties of commonly used binders (PG 64-22, Rubber modified binder, and SBS modified binder) containing wax additives (LEADCAP and Sasobit) were investigated using UV-Vis spectrometer. The result of this study showed that (1) the addition of modifiers (crumb rubber and SBS) with the base binder slightly increases the absorption of the binder; (2) the binder types and aging level have significant contribution on optical properties; (3) in general, the aged binders were observed to have higher reflectivity compared to the unaged binders; and (4) the addition of wax additives is observed to have a significant effect on the optical properties

    Characterization of recycled crumb rubber modified binders containing wax warm additives

    No full text
    This paper addresses the laboratory experiment of performance properties of recycled CRM binders containing artificially aged CRM binders with wax additives. The warm CRM binders were produced using two wax additives (LEADCAP and Sasobit) and then short-term and long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. The recycled CRM binders were aged through the RTFO and PAV procedures. A set of Superpave binder tests were carried out on the binders through the rotational viscometer, the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). In general, the results of this study indicated that (1) the addition of long-term aged (LTA) CRM binder can significantly increase the viscosity of the recycled CRM binders as expected, (2) the wax additives in recycled CRM binders were still effective to improve the viscosity and rutting properties even after experiencing the aging process, (3) the CRM binders containing wax additives showed the higher rutting resistance compared to the control CRM binders, (4) the recycled CRM binder containing wax additives was found to have less resistance to fatigue and low temperature cracking, (5) wax warm additives into the recycled CRM binders seemed to have a significant role for cracking properties, based upon their substantial amount. Keywords: CRM binder, Wax additives, Rotational viscosity, Recycling, Ruttin

    Characterization of Sustainable Asphalt Binders Modified with Styrene–Isoprene–Styrene (SIS) and Processed Oil

    No full text
    The current study aims to evaluate the viscosity and rheological properties of PG 64-22 modified with Styrene–Isoprene–Styrene (SIS) and Processed Oil (PO) to enhance asphalt binder properties. Performance properties were measured at high, intermediate, and low temperatures. PG 64-22 was blended with SIS and Processed Oil at three levels (5%, 10%, and 15% by weight of binder) and two concentrations (6% and 12% by weight of binder), respectively. Modified binders underwent two short and long artificial aging processes, through the spinning of the thin film in an RTFO oven and a pressure aging vessel (PAV). The Superpave binder evaluations were carried out using a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). According to the findings of the research, the addition of SIS caused higher values of viscosity, but when co-modified with processed oil, there was a substantial decrease in viscosity values. As a result, workability was improved. (1) It was observed that a greater reduction in viscosity was achieved when the processed oil was present at a higher concentration at 135 °C compared to a lower concentration. (2) The study showed that the incorporation of processed oil led to a reduction in rutting performance of the asphalt binder. However, the addition of SIS resulted in a notable enhancement of rutting resistance. (3) The role of processed oil as co-modifier at concentrations of 6% and 12% caused significant decreases in G*sin δ, based on the susceptibility of asphalt molecules to accept oil molecules in their network links. (4) The extracted measurements from the BBR tests indicated that modification with SIS and PO improved the low-temperature cracking resistance significantly. Comparison of asphalt binders modified with 6% and 12% PO and the same SIS content showed significant changes in modification with 12% PO rather than 6%

    Rheological and Morphological Characterization of Styrene-Isoprene-Styrene (SIS) Modified Asphalt Binder

    No full text
    The demand of strong polymer modified asphalt (PMA) binder is growing due to the increase of traffic and necessity to reduce the early deterioration of pavement due to cracking. In this study, physical and rheological properties of asphalt binder modified with a potential new polymer named styrene-isoprene-styrene (SIS) were investigated through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). In order to have a depth understanding on the SIS binder at micro level, micro-morphological observations were conducted using optical microscopy, atomic force microscopy (AFM), environmental scanning electron microscopy (ESEM), and ellipsometry. The result of this study showed that (1) the addition of SIS modifiers increased the viscosity and had a positive effect on rutting resistance of the binder; (2) the addition of 5%, 10%, 15%, and 20% SIS content increased the rutting resistance by 600%, 3000%, 5600%, and 6400%, respectively; (3) the higher the SIS content, the better the cracking resistance of the binder and it is observed to have improved the stiffness by 26% and 51% with the addition of 5% and 10% content of SIS, respectively; (4) AFM images showed the significant correlation between the stiffness and microstructural properties of the binder; (5) the dominance of new oval phase over network structure was evident in ESEM images and observed to have significant correlation to the high stiffness of the binder; and (6) with the percentage increase of SIS modifier, the binder is found to have higher absorption at UV wavelength

    Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder

    No full text
    Crumb rubber binder with thermoplastic polyurethane (TPU) has been experimented with to characterize the performance properties considering the workability, rutting, fatigue cracking and cracking resistance at low temperatures depending on the temperatures and aging states. Physical and rheological properties were evaluated to proceed with the study by applying Superpave asphalt binder testing and multi-stress creep recovery (MSCR). Based on the targeted experiments, the binder samples were produced at three aging states (original, short-term aged and long-term aged) using a rolling thin film oven (RTFO) and pressure aging vessel (PAV). The results revealed that (i) the addition of TPU into CRM binders has a potential effect on increasing viscoelasticity at the original condition, (ii) CRM binders containing TPU showed improved anti-aging performance based on results of RTFO residues and (iii) the inclusion of TPU made it possible for CRM asphalt binder to improve its fatigue and cracking resistance at low temperature

    Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders

    No full text
    The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene–isoprene–styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study’s results indicate the deep regression architecture is found to be effective in predicting the G*/sin δ value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder’s engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder
    corecore