100 research outputs found

    Construction of Almost Disjunct Matrices for Group Testing

    Full text link
    In a \emph{group testing} scheme, a set of tests is designed to identify a small number tt of defective items among a large set (of size NN) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a \emph{disjunct matrix}, an M×NM \times N matrix where the union of supports of any tt columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number MM of rows (tests). One of the main ways of constructing disjunct matrices relies on \emph{constant weight error-correcting codes} and their \emph{minimum distance}. In this paper, we consider a relaxed definition of a disjunct matrix known as \emph{almost disjunct matrix}. This concept is also studied under the name of \emph{weakly separated design} in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the \emph{average distance} of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Our second contribution is to explicitly construct almost disjunct matrices based on our average distance analysis, that have much smaller number of rows than any previous explicit construction of disjunct matrices. The parameters of our construction can be varied to cover a large range of relations for tt and NN.Comment: 15 Page

    On a Duality Between Recoverable Distributed Storage and Index Coding

    Full text link
    In this paper, we introduce a model of a single-failure locally recoverable distributed storage system. This model appears to give rise to a problem seemingly dual of the well-studied index coding problem. The relation between the dimensions of an optimal index code and optimal distributed storage code of our model has been established in this paper. We also show some extensions to vector codes.Comment: A small new section and new references added. A minor error corrected from the previous versio

    Capacity of Locally Recoverable Codes

    Full text link
    Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.Comment: Invited paper to the Information Theory Workshop (ITW) 201

    Security in Locally Repairable Storage

    Full text link
    In this paper we extend the notion of {\em locally repairable} codes to {\em secret sharing} schemes. The main problem that we consider is to find optimal ways to distribute shares of a secret among a set of storage-nodes (participants) such that the content of each node (share) can be recovered by using contents of only few other nodes, and at the same time the secret can be reconstructed by only some allowable subsets of nodes. As a special case, an eavesdropper observing some set of specific nodes (such as less than certain number of nodes) does not get any information. In other words, we propose to study a locally repairable distributed storage system that is secure against a {\em passive eavesdropper} that can observe some subsets of nodes. We provide a number of results related to such systems including upper-bounds and achievability results on the number of bits that can be securely stored with these constraints.Comment: This paper has been accepted for publication in IEEE Transactions of Information Theor
    • …
    corecore