1,756 research outputs found

    Multiplexable Kinetic Inductance Detectors

    Get PDF
    We are starting to investigate a novel multiplexable readout method that can be applied to a large class of superconducting pair-breaking detectors. This readout method is completely different from those currently used with STJ and TES detectors, and in principle could deliver large pixel counts, high sensitivity, and Fano-limited spectral resolution. The readout is based on the fact that the kinetic surface inductance L_s of a superconductor is a function of the density of quasiparticles n, even at temperatures far below T_c. An efficient way to measure changes in the kinetic inductance is to monitor the transmission phase of a resonant circuit. By working at microwave frequencies and using thin films, the kinetic inductance can be a significant part of the total inductance L, and the volume of the inductor can be made quite small, on the order of 1 µm^3. As is done with other superconducting detectors, trapping could be used to concentrate the quasiparticles into the small volume of the inductor. However, the most intriguing aspect of the concept is that passive frequency multiplexing could be used to read out ~10^3 detectors with a single HEMT amplifier

    Toward one-band superconductivity in MgB2

    Full text link
    The two-gap model for superconductivity in MgB2 predicts that interband impurity scattering should be pair breaking, reducing the critical temperature. This is perhaps the only prediction of the model that has not been confirmed experimentally. It was previously shown theoretically that common substitutional impurities lead to negligible interband scattering - if the lattice is assumed not to distort. Here we report theoretical results showing that certain impurities can indeed produce lattice distortions sufficiently large to create measurable interband scattering. On this basis, we predict that isoelectronic codoping with Al and Na will provide a decisive test of the two-gap model.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Josephson Junctions with a synthetic antiferromagnetic interlayer

    Full text link
    We report measurements of the critical current vs. Co thickness in Nb/Cu/Co/Ru/Co/Cu/Nb Josephson junctions, where the inner Co/Ru/Co trilayer is a "synthetic antiferromagnet" with the magnetizations of the two Co layers coupled antiparallel to each other via the 0.6 nm-thick Ru layer. Due to the antiparallel magnetization alignment, the net intrinsic magnetic flux in the junction is nearly zero, and such junctions exhibit excellent Fraunhofer patterns in the critical current vs. applied magnetic field, even with total Co thicknesses as large as 23 nm. There are no apparent oscillations in the critical current vs. Co thickness, consistent with theoretical expectations for this situation. The critical current of the junctions decays over 4 orders of magnitude as the total Co thickness increases from 3 to 23 nm. These junctions may serve as useful templates for future explorations of spin-triplet superconducting correlations, which are predicted to occur in supercon- ducting/ferromagnetic hybrid systems in the presence of certain types of magnetic inhomogeneity.Comment: 4 pages, 5 figure

    Electronic structure and magnetism in the frustrated antiferromagnet LiCrO2

    Full text link
    LiCrO2 is a 2D triangular antiferromagnet, isostructural with the common battery material LiCoO2 and a well-known Jahn-Teller antiferromagnet NaNiO2. As opposed to the latter, LiCrO2 exibits antiferromagnetic exchange in Cr planes, which has been ascribed to direct Cr-Cr d-d overlap. Using LDA and LDA+U first principles calculations I confirm this conjecture and show that (a) direct d-d overlap is indeed enhanced compared to isostructural Ni and Cr compounds, (b) p-d charge transfer gap is also enhanced, thus suppressing the ferromagnetic superexchange, (c) the calculated magnetic Hamiltonian maps well onto the nearest neighbors Heisenberg exchange model and (d) interplanar inteaction is antiferromagnetic.Comment: 5 pages, 4 figure

    The challenge of unravelling magnetic properties in LaFeAsO

    Full text link
    First principles calculations of magnetic and, to a lesser extent, electronic properties of the novel LaFeAsO-based superconductors show substantial apparent controversy, as opposed to most weakly or strongly correlated materials. Not only do different reports disagree about quantitative values, there is also a schism in terms of interpreting the basic physics of the magnetic interactions in this system. In this paper, we present a systematic analysis using four different first principles methods and show that while there is an unusual sensitivity to computational details, well-converged full-potential all-electron results are fully consistent among themselves. What makes results so sensitive and the system so different from simple local magnetic moments interacting via basic superexchange mechanisms is the itinerant character of the calculated magnetic ground state, where very soft magnetic moments and long-range interactions are characterized by a particular structure in the reciprocal (as opposed to real) space. Therefore, unravelling the magnetic interactions in their full richness remains a challenging, but utterly important task

    Break in the VHE spectrum of PG 1553+113: new upper limit on its redshift?

    Get PDF
    PG 1553+113 is a known BL Lac object, newly detected in the GeV-TeV energy range by H.E.S.S and MAGIC. The redshift of this source is unknown and a lower limit of z>0.09z > 0.09 was recently estimated. The very high energy (VHE) spectrum of PG 1553+113 is attenuated due to the absorption by the low energy photon field of the extragalactic background light (EBL). Here we correct the combined H.E.S.S and MAGIC spectrum of PG 1553+113 for this absorption assuming a minimum density of the evolving EBL. We use an argument that the intrinsic photon index cannot be harder than Γ=1.5\Gamma = 1.5 and derive an upper limit on the redshift of z<0.69z < 0.69. Moreover, we find that a redshift above z=0.42z = 0.42 implies a possible break of the intrinsic spectrum at about 200 GeV. Assuming that such a break is absent, we derive a much stronger upper limit of z<0.42z < 0.42. Alternatively, this break might be attributed to an additional emission component in the jet of PG 1553+113. This would be the first evidence for a second component is detected in the VHE spectrum of a blazar.Comment: revised version submitted to Ap

    Accounting for spin fluctuations beyond LSDA in the density functional theory

    Full text link
    We present a method to correct the magnetic properties of itinerant systems in local spin density approximation (LSDA) and we apply it to the ferromagnetic-paramagnetic transition under pressure in a typical itinerant system, Ni3_{3}Al. We obtain a scaling of the critical fluctuations as a function of pressure equivalent to the one obtained within Moryia's theory. Moreover we show that in this material the role of the bandstructure is crucial in driving the transition. Finally we calculate the magnetic moment as a function of pressure, and find that it gives a scaling of the Curie temperature that is in good agreement with the experiment. The method can be easily extended to the antiferromagnetic case and applied, for instance, to the Fe-pnictides in order to correct the LSDA magnetic moment.Comment: 7 pages, 4 figure
    • …
    corecore