93 research outputs found

    Exact energy spectrum of a two-temperature kinetic Ising model

    Full text link
    The exact energy spectrum is developed for a two temperature kinetic Ising spin chain, and its dual reaction diffusion system with spatially alternating pair annihilation and creation rates. Symmetries of the system pseudo-Hamiltonian that enable calculation of the spectrum are also used to derive explicit state vectors for small system sizes, and to make observations regarding state vectors in the general case. Physical consequences of the surprisingly simple form for the eigenvalues are also discussed

    Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities

    Full text link
    We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium, combined with self-defocusing cubic nonlinearity, give rise to completely localized spatiotemporal solitons (vortex tori) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are found to be stable against small perturbations if their energy exceeds a certain critical value, so that the stability domain occupies about 10% of the existence region of the solitons. We also demonstrate that the s=1 solitons are stable against very strong perturbations initially added to them. However, on the contrary to spatial vortex solitons in the same model, the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres

    Vortex stability in nearly two-dimensional Bose-Einstein condensates with attraction

    Full text link
    We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ("pancake-shaped") trapped BEC with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0<N<(1/3)Nmax(S=1)0<N<(1/3)N_{\max}^{(S=1)}, where NN is the number of atoms, and Nmax(S=1)N_{\max}^{(S=1)} is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)Nmax(S=1)<N<(1/3)N_{\max }^{(S=1)}<N< 0.43Nmax(S=1)\allowbreak 0.43N_{\max}^{(S=1)}, the unstable vortex periodically splits in two fragments and recombines. At N>N> 0.43Nmax(S=1)\allowbreak 0.43N_{\max}^{(S=1)}, the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full 3D Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio 10\sqrt{10}, the stability interval of the S=1 vortices occupies 40\approx 40% of their existence region, hence the 2D limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S2S\geq 2 are unstable.Comment: 21 pages, 8 figures, to appear in Physical Review

    Cooperative sequential adsorption models on a Cayley tree: analytical results and applications

    Full text link
    We present a class of cooperative sequential adsorption models on a Cayley tree with constant and variable attachment rates and their possible applications for ionic self-assembly of thin films and drug encapsulation of nanoparticles. Using the empty interval method, and generalizing results known from reaction-diffusion processes on Cayley trees, we calculate a variety of quantities such as time-dependent surface coverage and time-dependent probabilities of certain particle configurations

    Stochastic epidemic-type model with enhanced connectivity: exact solution

    Full text link
    We present an exact analytical solution to a one-dimensional model of the Susceptible-Infected-Recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions, and compare our results with a low connectivity SIR model reported by Schuetz et al.. Our results compare well to those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic type models

    Non-equilibrium statistical mechanics: a solvable model

    Full text link
    A two-temperature linear spin model is presented that allows an easily understandable introduction to non-equilibrium statistical physics. The model is one that includes the concepts that are typical of more realistic non-equilibrium models but that allows straightforward steady state solutions and, for small systems, development of the full time dependence for configuration probabilities. The model is easily accessible to upper-level undergraduate students, and also provides a good check for computer models of larger systems

    The relationship between gut microbiota and spontaneous bacterial peritonitis in patients with liver cirrhosis - a literature review

    Get PDF
    Gut microbiota is an essential component in the pathogenesis of liver cirrhosis and its complications. There is a direct relationship between the gut and the liver called the gutliver axis through which bacteria can reach the liver through the portal venous blood. However, it remains unclear how bacteria leave the intestine and reach the fluid collection in the abdomen. A series of mechanisms have been postulated to be involved in the pathogenesis of spontaneous bacterial peritonitis (SBP) and other complications of liver cirrhosis, including bacterial translocation, bacterial overgrowth, altered intestinal permeability and dysfunctional immunity. The hepatic function may also be affected by the alteration of intestinal microbiota composition. Current treatment in SBP is antibiotic therapy, but lately, probiotics have been the useful treatment suggested to improve the intestinal barrier and prevent bacterial translocation. However, studies are contradictory regarding their usefulness. In this review, we will summarize the literature data on the pathogenesis of spontaneous bacterial peritonitis concerning the existence of a relationship with the microbiota and the useful use of probiotics
    corecore