9 research outputs found

    p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases

    Get PDF
    Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual’s brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression

    Effects of Flaxseed and Multi-Carbohydrase Enzymes on the Cecal Microbiota and Liver Inflammation of Laying Hens

    No full text
    Background: The use of wheat and flaxseed to produce omega-3 (ω-3) enriched poultry meat and eggs is very popular in the world. However, wheat and flaxseed contain some anti-nutritional factors (ANFs), and enzymes are usually used to alleviate the deleterious influence of ANFs. Method: A 2 × 3 two factors design was used in the experiment. A total of 540 twenty-week-old Nongda-3 laying hens were randomly allocated to six dietary treatments, two diets (corn/flaxseed and wheat/flaxseed), and three enzymes (enzyme-a contains neutral protease 10,000, xylanase 35,000, β-mannanase 1500, β-glucanase 2000, cellulose 500, amylase 100, and pectinase 10,000 (U g−1); enzyme-b contains alkaline protease 40,000 and neutral protease 10,000 (U g−1); enzyme-c contains alkaline protease 40,000, neutral protease 10,000, and cellulase 4000 (U g−1). Results: There was an interaction between dietary treatment and supplemental enzymes for liver weight and liver inflammatory cytokines of broilers. A significant increase was observed in the fat weight of birds fed a corn diet as compared with a wheat diet. A corn diet and wheat diet with the addition of enzyme-a (p < 0.001) showed the highest level of liver fat followed by enzyme-c (p < 0.01) and enzyme-b. Moreover, a high level of secretory IL-1β, IL-6, and IL-10 and comparatively higher inflammatory changes in the liver tissue were found in birds fed a corn diet as compared with a wheat diet, and enzyme-b showed more beneficial effects as compared with enzyme-a and -c. The gut microbial composition of hens fed a corn diet was significantly different than that of birds fed a wheat diet. Bacteroides were significantly (p < 0.05) abundant in the corn-fed birds as compared with wheat-fed birds. However, Firmicutes were less abundant in the wheat-fed birds than the corn-fed birds (16.99 vs. 31.80%, respectively). The microbial community at the genus level differed significantly in the dietary groups and we observed that Bacteroides are the predominant cecal microbiota. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of co-factors, carbohydrates, vitamins, protein, and energy were expressed at slightly higher levels in the microbiota of the wheat-fed birds, whereas, metabolic pathways for nucleotides, lipids, and glycine were expressed at higher levels in the wheat-fed birds. Furthermore, expression of the growth and cellular processes pathway and endocrine system pathway levels were predicted to be higher for the wheat-fed group as compared with the corn-fed group. Conclusions: In conclusion, our findings suggest that inflammatory changes in laying birds were mediated by a corn diet with flaxseed and enzymes instead of a wheat diet. Additionally, in the wheat-fed group, enzyme-b and -c showed more encouraging results as compared to enzyme-a

    Effect of NPK rates and irrigation frequencies on the growth and yield performance of <em>Trifolium alexandrium</em> L.

    No full text
    The limiting of water resource and traditional farming practices are threatening the sustainability of important minor crops in Pakistan, including berseem, which is a key source of fodder for dairy farms. Each year, 2% reduction of cultivated area, low yield and grower’s non-preference (to rotate or replace wheat-cotton pattern) factors are adversely affecting the livestock sector. Consequently, animal rearing business is suffering badly due to lack of fresh forage in the country. Therefore, a three-replicated randomized complete block design (RCBD) field experiment was conducted during rabi season to evaluate berseem crop in term of yield and profit under existing farming practice (85:115:00 NPK kg ha−1 + 12 irrigations with 15 days intervals) and optimized treatments (70:100:30 NPK kg ha−1, 55:85:15 NPK kg ha−1 + 12, 08, 04 irrigations + 15, 18, 21 days intervals). The net plot size was 12 m2 with a pH range of 8.1 silty clay loam soil type. In addition, the climate was monitored as well, there was no rainfall observed during the entire crop period. The analysis of statistical data showed a significant (p &lt; 0.05) vegetative, reproductive and economic performance of berseem in optimized farming practices compared to traditional practice. Thus, maximum plant height, leaves plant−1, branches plant−1, plant weight, fodder and seed yield, net profit, and profit on −1(81.8cm,100.8,36.0,19.3(g),72.0t,829.30kgha−1,−1 (81.8 cm, 100.8, 36.0, 19.3 (g), 72.0 t, 829.30 kg ha−1, 1910.8 ha−1, $2.03 respectably) were measured from treatment 70:100:30 NPK kg ha−1 + 12 irrigations at 15 days intervals, which is recommended to the farmers of synonymic agro-environmental conditions. Furthermore, the treatment 70:100:30 NPK kg ha−1 + 8 irrigations was also better with the aspect of satisfactory outcome and 33% less use of water

    Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against <i>Mycobacterium bovis</i> Infection by Modulating Autophagy and Apoptosis

    No full text
    Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1&#946;, IL-6, IL-12 and TNF-&#945; were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-&#946; expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB

    PP2Ac Modulates AMPK-Mediated Induction of Autophagy in Mycobacterium bovis-Infected Macrophages

    No full text
    Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis in cattle population across the world. Human beings are at equal risk of developing tuberculosis beside a wide range of M. bovis infections in animal species. Autophagic sequestration and degradation of intracellular pathogens is a major innate immune defense mechanism adopted by host cells for the control of intracellular infections. It has been reported previously that the catalytic subunit of protein phosphatase 2A (PP2Ac) is crucial for regulating AMP-activated protein kinase (AMPK)-mediated autophagic signaling pathways, yet its role in tuberculosis is still unclear. Here, we demonstrated that M. bovis infection increased PP2Ac expression in murine macrophages, while nilotinib a tyrosine kinase inhibitor (TKI) significantly suppressed PP2Ac expression. In addition, we observed that TKI-induced AMPK activation was dependent on PP2Ac regulation, indicating the contributory role of PP2Ac towards autophagy induction. Furthermore, we found that the activation of AMPK signaling is vital for the regulating autophagy during M. bovis infection. Finally, the transient inhibition of PP2Ac expression enhanced the inhibitory effect of TKI-nilotinib on intracellular survival and multiplication of M. bovis in macrophages by regulating the host&rsquo;s immune responses. Based on these observations, we suggest that PP2Ac should be exploited as a promising molecular target to intervene in host&ndash;pathogen interactions for the development of new therapeutic strategies towards the control of M. bovis infections in humans and animals

    Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy

    No full text
    Nilotinib, a tyrosine kinase inhibitor, has been studied extensively in various tumor models; however, no information exists about the pharmacological action of nilotinib in bacterial infections. Mycobacterium bovis (M. bovis) and Mycobacterium avium subspecies paratuberculosis (MAP) are the etiological agents of bovine tuberculosis and Johne&#8217;s disease, respectively. Although M. bovis and MAP cause distinct tissue tropism, both of them infect, reside, and replicate in mononuclear phagocytic cells of the infected host. Autophagy is an innate immune defense mechanism for the control of intracellular bacteria, regulated by diverse signaling pathways. Here we demonstrated that nilotinib significantly inhibited the intracellular survival and growth of M. bovis and MAP in macrophages by modulating host immune responses. We showed that nilotinib induced autophagic degradation of intracellular mycobacterium occurred via the inhibition of PI3k/Akt/mTOR axis mediated by abelson (c-ABL) tyrosine kinase. In addition, we observed that nilotinib promoted ubiquitin accumulation around M. bovis through activation of E3 ubiquitin ligase parkin. From in-vivo experiments, we found that nilotinib effectively controlled M. bovis growth and survival through enhanced parkin activity in infected mice. Altogether, our data showed that nilotinib regulates protective innate immune responses against intracellular mycobacterium, both in-vitro and in-vivo, and can be exploited as a novel therapeutic remedy for the control of M. bovis and MAP infections

    Combinatory FK506 and Minocycline Treatment Alleviates Prion-Induced Neurodegenerative Events via Caspase-Mediated MAPK-NRF2 Pathway

    No full text
    Transcription factors play a significant role during the symptomatic onset and progression of prion diseases. We previously showed the immunomodulatory and nuclear factor of activated T cells&rsquo; (NFAT) suppressive effects of an immunosuppressant, FK506, in the symptomatic stage and an antibiotic, minocycline, in the pre-symptomatic stage of prion infection in hamsters. Here we used for the first time, a combinatory FK506+minocycline treatment to test its transcriptional modulating effects in the symptomatic stage of prion infection. Our results indicate that prolonged treatment with FK506+minocycline was effective in alleviating astrogliosis and neuronal death triggered by misfolded prions. Specifically, the combinatory therapy with FK506+minocycline lowered the expression of the astrocytes activation marker GFAP and of the microglial activation marker IBA-1, subsequently reducing the level of pro-inflammatory cytokines interleukin 1 beta (IL-1&beta;) and tumor necrosis factor alpha (TNF-&alpha;), and increasing the levels of anti-inflammatory cytokines IL-10 and IL-27. We further found that FK506+minocycline treatment inhibited mitogen-activated protein kinase (MAPK) p38 phosphorylation, NF-kB nuclear translocation, caspase expression, and enhanced phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated Bcl2-associated death promoter (pBAD) levels to reduce cognitive impairment and apoptosis. Interestingly, FK506+minocycline reduced mitochondrial fragmentation and promoted nuclear factor&ndash;erythroid2-related factor-2 (NRF2)-heme oxygenase 1 (HO-1) pathway to enhance survival. Taken together, our results show that a therapeutic cocktail of FK506+minocycline is an attractive candidate for prolonged use in prion diseases and we encourage its further clinical development as a possible treatment for this disease

    Sero-Prevalence of Peste Des Petits Ruminants Among Goats of Different Zones of District Thatta, Sindh

    No full text
    Introduction: Peste des Petits Ruminants (PPR) is a highly contagious and viraldisease primarily affecting goats and sheep, caused by the PPR virus (PPRV), which belongs tothe family paramyxoviridae, and genus morbillivirus. Methodology: A total of 100 bloodsamples (female n=67 and male n=33) of goats from different areas of Thatta district werecollected. Risk factors like area, age, sex and season were analyzed. Clinically affected animalsexhibited high temperature (41oC), anorexia, dullness, lacrimal secretions, and nasal dischargediahhrea starting from 2 to 6 days post infection, hair blow the eyes becomes wet and there ismatting together of the eyelids as well as partial blockage of the nostrils by dried up purulentdischarges. Samples were transported to Central Veterinary Diagnostic Laboratory (CVDL)Tandojam, Sindh for laboratory confirmation. The competitive ELISA was performed to measureantibodies to the PPR virus. Results: The sero-positivity of PPR cases in female were 76.12%(51/67) and male 51.52% (17/33). The highest sero-prevalence was observed in age group of 4-12month 75.56% (34/45). Lowest sero-prevalence was detected in age group of 0-4 month 47.83%(11/23). Highest prevalence of PPR infections were observed in the month of August 70%(21/30), followed by 69.04% (29/42) in the September, the lowest prevalence was 64.28% (18/28)in the July. Conclusion: It is concluded from the present study that female animals were moreaffected than males. The higher infection was recorded during the August. Comparatively, younganimals were more affected than the suckler and adults
    corecore