783 research outputs found

    The High Eccentricity of the Planet Around 16 Cyg B

    Full text link
    We consider the high eccentricity, 0.66, of the newly discovered planet around 16 Cyg B, using the fact that the parent star is part of a wide binary. We show that the high eccentricity of the planet could be the result of tidal forces exerted on 16 Cyg B and its planet by 16 Cyg A, the distant companion in the system. By following stellar triple systems with parameters similar to those of 16 Cyg, we have established that the orbital eccentricity of the planet could have gone through strong modulation, with an amplitude of 0.8 or even larger, with typical timescale of tens of millions years. The amplitude of the planet eccentricity strongly depends on the relative inclination between the plane of motion of the planet and that of the wide binary 16 Cyg AB. To account for the present eccentricity of the planet we have to assume that the angle between the two planes of motion is large, at least 60 deg. We argue that this assumption is reasonable for wide binaries like 16 Cyg AB.Comment: 2 Figures, Latex, submitted for publication to ApJ

    Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT-3 lightcurve

    Full text link
    CoRoT-3b is a 22 Jupiter-mass massive-planet/brown-dwarf object, orbiting an F3-star with a period of 4.3 days. We analyzed the out-of-transit CoRoT-3 red-channel lightcurve obtained by the CoRoT mission and detected the ellipsoidal modulation, with half the orbital period and amplitude of 59+/-9 ppm (parts per million) and the relativistic beaming effect, with the orbital period and an amplitude of 27+/-9 ppm. Phases and amplitudes of both modulations were consistent with our theoretical approximation.Comment: Published in Astronomy & Astrophysics. 5 pages, 2 figure

    The Smallest Mass Ratio Young Star Spectroscopic Binaries

    Get PDF
    Using high resolution near-infrared spectroscopy with the Keck telescope, we have detected the radial velocity signatures of the cool secondary components in four optically identified pre-main-sequence, single-lined spectroscopic binaries. All are weak-lined T Tauri stars with well-defined center of mass velocities. The mass ratio for one young binary, NTTS 160905-1859, is M2/M1 = 0.18+/-0.01, the smallest yet measured dynamically for a pre-main-sequence spectroscopic binary. These new results demonstrate the power of infrared spectroscopy for the dynamical identification of cool secondaries. Visible light spectroscopy, to date, has not revealed any pre-main-sequence secondary stars with masses <0.5 M_sun, while two of the young systems reported here are in that range. We compare our targets with a compilation of the published young double-lined spectroscopic binaries and discuss our unique contribution to this sample.Comment: Accepted for publication in the April, 2002, ApJ; 6 figure

    Correcting systematic effects in a large set of photometric light curves

    Get PDF
    We suggest a new algorithm to remove systematic effects in a large set of light curves obtained by a photometric survey. The algorithm can remove systematic effects, such as those associated with atmospheric extinction, detector efficiency, or point spread function changes over the detector. The algorithm works without any prior knowledge of the effects, as long as they linearly appear in many stars of the sample. The approach, which was originally developed to remove atmospheric extinction effects, is based on a lower rank approximation of matrices, an approach which has already been suggested and used in chemometrics, for example. The proposed algorithm is especially useful in cases where the uncertainties of the measurements are unequal. For equal uncertainties, the algorithm reduces to the Principal Component Analysis (PCA) algorithm. We present a simulation to demonstrate the effectiveness of the proposed algorithm and we point out its potential, in the search for transit candidates in particula

    II.3 Exposure based algorithm for removing systematics out of the CoRoT light curves

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter

    Full text link
    KOI-13 was presented by the Kepler team as a candidate for having a giant planet - KOI-13.01, with orbital period of 1.7 d and transit depth of ~0.8%. We have analyzed the Kepler Q2 data of KOI-13, which was publicly available at the time of the submission of this paper, and derived the amplitudes of the beaming, ellipsoidal and reflection modulations: 8.6 +/- 1.1, 66.8 +/- 1.6 and 72.0 +/- 1.5 ppm (parts per million), respectively. After the paper was submitted, Q3 data were released, so we repeated the analysis with the newly available light curve. The results of the two quarters were quite similar. From the amplitude of the beaming modulation we derived a mass of 10 +/- 2 M_Jup for the secondary, suggesting that KOI-13.01 was a massive planet, with one of the largest known radii. We also found in the data a periodicity of unknown origin with a period of 1.0595 d and a peak-to-peak modulation of ~60 ppm. The light curve of Q3 revealed a few more small-amplitude periodicities with similar frequencies. It seemed as if the secondary occultation of KOI-13 was slightly deeper than the reflection peak-to-peak modulation by 16.8 +/- 4.5 ppm. If real, this small difference was a measure of the thermal emission from the night side of KOI-13.01. We estimated the effective temperature to be 2600 +/- 150 K, using a simplistic black-body emissivity approximation. We then derived the planetary geometrical and Bond albedos as a function of the day-side temperature. Our analysis suggested that the Bond albedo of KOI-13.01 might be substantially larger than the geometrical albedo.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore