72 research outputs found

    Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors

    Get PDF
    AbstractPatient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers

    Regulation of Urokinase Receptor Expression by p53: Novel Role in Stabilization of uPAR mRNAâ–¿

    No full text
    We found that p53-deficient (p53−/−) lung carcinoma (H1299) cells express robust levels of cell surface uPAR and uPAR mRNA. Expression of p53 protein in p53−/− cells suppressed basal and urokinase (uPA)-induced cell surface uPAR protein and increased uPAR mRNA degradation. Inhibition of p53 by RNA silencing in Beas2B human airway epithelial cells conversely increased basal as well as uPA-mediated uPAR expression and stabilized uPAR mRNA. Purified p53 protein specifically binds to the uPAR mRNA 3′ untranslated region (3′UTR), and endogenous uPAR mRNA associates with p53. The p53 binding region involves a 37-nucleotide uPAR 3′UTR sequence, and insertion of the p53 binding sequence into β-globin mRNA destabilized β-globin mRNA. Inhibition of p53 expression in these cells reverses decay of chimeric β-globin-uPAR mRNA. These observations demonstrate a novel regulatory role for p53 as a uPAR mRNA binding protein that down-regulates uPAR expression, destabilizes uPAR mRNA, and thereby contributes to the viability of human airway epithelial or lung carcinoma cells

    The Urokinase Receptor Supports Tumorigenesis of Human Malignant Pleural Mesothelioma Cells

    No full text
    Malignant pleural mesothelioma (MPM) is a lethal neoplasm for which current therapy is unsatisfactory. The urokinase plasminogen activator receptor (uPAR) is associated with increased virulence of many solid neoplasms, but its role in the pathogenesis of MPM is currently unclear. We found that REN human pleural MPM cells expressed 4- to 10-fold more uPAR than MS-1 or M9K MPM cells or MeT5A human pleural mesothelial cells. In a new orthotopic murine model of MPM, we found that the kinetics of REN cell tumorigenesis is accelerated versus MS-1 or M9K cells, and that REN instillates generated larger tumors expressing increased uPAR, were more invasive, and caused earlier mortality. While REN, MS-1, and M9K tumors were all associated with prominent extravascular fibrin deposition, excised REN tumor homogenates were characterized by markedly increased uPAR at both the mRNA and protein levels. REN cells exhibited increased thymidine incorporation, which was attenuated in uPAR-silenced cells (P < 0.01). REN cells traversed three-dimensional fibrin gels while MS-1, M9K, and MeT5A cells did not. uPAR siRNA or uPAR blocking antibodies decreased REN cell migration and invasion, while uPA and fetal bovine serum augmented the effects. Transfection of relatively low uPAR expressing MS-1 cells with uPAR cDNA increased proliferation and migration in vitro and tumor formation in vivo. These observations link overexpression of uPAR to the pathogenesis of MPM, demonstrate that this receptor contributes to accelerated tumor growth in part through interactions with uPA, and suggest that uPAR may be a promising target for therapeutic intervention
    • …
    corecore