11 research outputs found

    Molecular characterization and antibiotic susceptibility profiles of Helicobacter pylori isolated from patients with Gastrodeudenal diseases in Jordan

    Get PDF
    Introduction:  Helicobacter pylori is a major cause of more than 80% of chronic active gastritis and other gastrodeudonal diseases worldwide. Successful treatment of H. pylori routinely requires the use of multiple agents with different mechanisms including compounds inhibiting acid secretion in conjunction with antibiotics. However, recent data showed the emergence of resistant clinical strains particularly against metronidazole and clarithromycin. The aim of this study is to determine the prevalence of and the susceptibility of H. pylori isolates recovered from patients with gastrodeudonal diseases to several antimicrobial agents. Materials and Methods: A prospective study has been conducting on Jordanian patients attended the gastrointestinal unit of the Jordan university hospital starting from 2014-2015 with gastroduodenal diseases. Antral and corpus mucosal biopsies from the stomach of each patient were used for the isolation of H. pylori on selective culture media. Presumptive H. pylori colonies were subsequently confirmed by biochemical tests and standard 16S rDNA PCR assay. The antimicrobial susceptibility testing was performed by standard agar diffusion methods according to CLSI. Subsequently, MICs were determined by E test and standard agar dilution method. Molecular typing of the clinical strains was performed using multiplex PCR for the detection of vacA and cagA genotypes. Metronidazole resistance was characterized by molecular methods for the detection of rdxA gene mutations. Results: Among 72 symptomatic patients, 13 (23%) patients showed positive H. pylori infection by both rapid urease test and culture. The antibiotic susceptibility profile showed that all of the isolates were sensitive to amoxicillin.  Resistance to, clarithromycin, ciprofloxacin and levofloxacin were observed in 15%, 23% and 8% of the isolates respectively while 92% of the strains were resistant to metronidazole (MIC ≥ 32 ug/ml). Metronidazole resistance due to mutations in rdxA gene was only observed in one strain (8%) suggesting other resistance mechanisms. Correlation between antibiotic resistance and virulence factors was statistically not significant (p > 0.05). Conclusion: The present study showed that the prevalence of metronidazole resistance among clinical isolates of H. pylori is very high. Lower resistance to other antibiotics are reported. Concern should be taken into consideration when triple therapy is used for the treatment of H. pylori in our region

    Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment

    Get PDF
    In Jordan, as well as in all the world countries, consumption of citrus fruits is an essential part of the daily diet, so it is important to assess the potential risk of the persistent organic pollutants such as polyaromatic hydrocarbons (PAHs) in these fruits to the human health and identify their sources in order to eliminate or reduce them. This study reports 16 priority PAHs content in four types of peeled citrus fruits grown in Jordan valley. PAHs were detected in all the studied samples in variable quantities depending on the type of citrus fruits. The results showed that the highest PAH level corresponded to acenaphthene (35.018 µg/kg) in grapefruit. Among the carcinogenic PAHs, benzo[a]anthracene (BaA) and benzo(a)pyrene (BaP) were the most representative and found in all the analyzed fruit, soil, and water samples, whereas anthracene (ANT) was not detected at all. The mean ∑16 PAHs for the different fruits were found to be 62.593 µg kg−1 in grapefruit, 24.840 µg kg−1 in lemon, 22.901 µg kg−1 in mandarin, and 5.082 µg kg−1 in orange. The dominance of naphthalene (NAP) and acenaphthene (ACE) in soil under hot climatic conditions indicates the recent and continuous input of these types in the investigated area. The bioconcentration factor (BCF) for ∑16 PAHs was observed in the order of grapefruit > lemon > mandarin > orange. Based on the results of the principal component analysis (PCA), the primary sources of PAHs in agricultural soils mainly originated from biomass burning and vehicular emissions. The incremental lifetime cancer risk (ILCR) indicated that consumption of these four citrus fruits may expose human health to potential cancer risk. The findings of this study call the policymakers and public administrations to the formulation of stringent policies and actions to control biomass burning and vehicular emissions

    Accumulation, Source Identification, and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables

    Get PDF
    The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs

    Interaction of Folk Medicinal Plants with Levofloxacin against Escherichia Coli

    No full text
    The present study was conducted to assess the in vitro activities of folk medicinal plants in combination with levofloxacin against TG1 and mutant KAM3-1(∆acrB-∆tolC) Escherichia coli strains. Plants were chosen based on their traditional use in combination with antibiotics among laymen. Standard protocols were followed to examine the antimicrobial activity of plant extracts and levofloxacin against E. coli in term of their minimum inhibitory concentrations (MICs) and to evaluate the plant extracts-levofloxacin interaction using checkerboard method. Among the twelve plants investigated, Thymus vulgaris, Zingiber officinale, Teucrium polium, Matricaria chamomilla and Curcuma longa had the best antimicrobial activities against E. coli strains with MIC values at 250 μg/ml. It is noteworthy to mention that other folk plants extracts reveled no effects against E coli strains. Furthermore, additive interactions were observed between levofloxacin and T. polium or T. vulgaris against E. coli wild-type TG1 strain. There was no antagonism being observed in this study. The detection of additive interaction between the extracts and levofloxacin demonstrates the prospective of these folk medicinal plants as a source of compounds to modulate antibiotic resistance

    Synthesis of New Nitrofluoroquinolone Derivatives with Novel Anti-Microbial Properties against Metronidazole Resistant H. pylori

    No full text
    One of the major therapeutic approaches to preventing relapse and accelerating the healing of duodenal and gastric ulcers is the eradication of Helicobacter pylori. Due to the emergence of antibiotic resistance among clinical strains of H. pylori, alternative approaches using newly discovered antimicrobial agents in combination with the standard regimens for the treatment of H. pylori are increasingly needed. The purpose of the present study was to investigate the effect of newly synthesized 8-nitroflouroqunolone derivatives when used either alone or when combined with metronidazole against metronidazole-resistant H. pylori. Based on the standard antimicrobial susceptibility testing methods and checkerboard titration assay, all of the tested compounds showed interesting antimicrobial activity against 12 clinical strains of H. pylori, with the best in vitro effect for compound 3c. In addition, synergistic and additive activities of some of the tested compounds were observed when combined with metronidazole. Furthermore, among the tested nitroflouroquinolone derivatives, compound 3b showed significant urease inhibition activity with IC50 of 62.5 µg/mL. These results suggest that 8-nitroflouroquinolone derivatives may have a useful role in combination with anti-H. pylori drugs in the management of H. pylori-associated diseases

    Synthesis of 1,2,3-Triazolo[4,5-h]quinolone Derivatives with Novel Anti-Microbial Properties against Metronidazole Resistant Helicobacter pylori

    No full text
    Helicobacter pylori infection can lead to gastritis, peptic ulcer, and the development of mucosa associated lymphoid tissue (MALT) lymphoma. Treatment and eradication of H. pylori infection can prevent relapse and accelerate the healing of gastric and duodenal ulcers as well as regression of malignancy. Due to the increasing emergence of antibiotic resistance among clinical isolates of H. pylori, alternative approaches using newly discovered antimicrobial agents in combination with the standard antibiotic regimens for the treatment of H. pylori are of major importance. The purpose of the present study was to investigate the effect of newly synthesized 8-amino 7-substituted fluoroquinolone and their correspondent cyclized triazolo derivatives when either alone or combined with metronidazole against metronidazole-resistant H. pylori. Based on standard antimicrobial susceptibility testing methods and checkerboard titration assay, all of the tested compounds showed interesting antimicrobial activity against 12 clinical strains of H. pylori, with best in vitro effect for compounds 4b and 4c. Fractional inhibitory concentration (FIC) mean values showed synergistic pattern in all compounds of Group 5. In addition, additive activities of some of the tested compounds of Group 4 were observed when combined with metronidazole. In contrast, the tested compounds showed no significant urease inhibition activity. These results support the potential of new fluoroquinolone derivatives to be useful in combination with anti-H. pylori drugs in the management of H. pylori-associated diseases

    Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy

    No full text
    Cancer is considered one of the top global causes of death. Natural products have been used in oncology medicine either in crude form or by utilizing isolated secondary metabolites. Biologically active phytomolecules such as gallic acid and quercetin have confirmed antioxidant, anti-bacterial, and neoplastic properties. There is an agreement that microorganisms could mediate oncogenesis or alter the immune system. This research project aims to develop a novel formulation of co-loaded gallic acid and quercetin into nanoliposomes and investigate the efficacy of the free and combined agents against multiple cancerous cell lines and bacterial strains. Thin-film hydration technique was adopted to synthesize the nanocarriers. Particle characteristics were measured using a Zetasizer. The morphology of nanoliposomes was examined by scanning electron microscopy, Encapsulation efficiency and drug loading were evaluated using High-Performance Liquid Chromatography. Cytotoxicity was determined against Breast Cancer Cells MCF-7, Human Carcinoma Cells HT-29, and A549 Lung Cancer Cells. The antibacterial activities were evaluated against Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Therapeutic formulas were categorized into groups: free gallic acid, free quercetin, free-mix, and their nano-counterparts. Findings revealed that drug loading capacity was 0.204 for the mix formula compared to 0.092 and 0.68 for free gallic acid and quercetin, respectively. Regarding the Zeta potential, the mix formula showed more amphiphilic charge than the free quercetin and free gallic acid formulas (P-values 0.003 and 0.002 receptively). On the contrary, no significant difference in polydispersity indices was reported. Lung cancerous cells were the most affected by the treatments. The best estimated IC50 values were observed in breast and lung cancer lines for the nano-gallic acid and co-loaded particles. The nano-quercetin formula exhibited the least cytotoxicity with an IC50 value of ≥200 μg/mL in both breast (MCF-7) and colorectal adenocarcinoma cell lines (HT-29) with no activity against the lung. A remarkable improvement in the efficacy of quercetin was measured after mixing it with gallic acid against the breast and lungs. The tested therapeutic agents exhibited antimicrobial activity against gram-positive bacteria. Nano-liposomes can either enhance or reduce the cytotoxicity activity of active compounds depending on the physical and chemical properties of drug-loaded and type of cancer cells

    Novel in vitro and in vivo anti-Helicobacter pylori effects of pomegranate peel ethanol extract

    Get PDF
    Background and Aim: Interest in plants with antimicrobial properties has been revived due to emerging problems associated with using antibiotics to eradicate Helicobacter pylori. Accordingly, this study aims to assess the antibacterial effects of Punica granatum and the possible synergistic effect of its extract along with metronidazole against H. pylori. Materials and Methods: Pomegranate peel ethanol extracts (PPEE) was tested against a control strain of H. pylori (NCTC 11916) in vitro and in vivo in female Wistar rats. Moreover, the synergistic effect of PPEE in combination with metronidazole was tested in vitro. Results: The PPEE exhibited a remarkable activity against H. pylori with a minimum inhibitory concentration (MIC) of 0.156 mg/mL. Furthermore, the extract exhibited a pronounced urease inhibitory activity (IC50 ∼6 mg/mL) against the tested strain. A synergistic effect between PPEE and metronidazole was also observed (fractional inhibitory concentrations <0.5). Oral treatment of rats with PPEE for 8 days produced a significant reduction in H. pylori gastritis and a significant decrease in both lymphocytic and positive chronicity. Conclusion: Pomegranate extract is probably safe and represents a potential alternative and complementary therapy for reducing H. pylori associated with gastric ulcers

    Bi-Sn catalytic foam governed by nanometallurgy of liquid metals

    Full text link
    Metallic foams, with intrinsic catalytic properties, are critical for heterogeneous catalysis reactions and reactor designs. Market ready catalytic foams are costly and made of multimaterial coatings with large sub-millimeter open cells providing insufficient active surface area. Here we use the principle of nanometallurgy within liquid metals to prepare nanostructured catalytic metal foams using a low-cost alloy of bismuth and tin with sub-micrometer open cells. The eutectic bismuth and tin liquid metal alloy was processed into nanoparticles and blown into a tin and bismuth nanophase separated heterostructure in aqueous media at room temperature and using an indium brazing agent. The CO2 electroconversion efficiency of the catalytic foam is presented with an impressive 82% conversion efficiency toward formates at high current density of -25 mA cm-2 (-1.2 V vs RHE). Nanometallurgical process applied to liquid metals will lead to exciting possibilities for expanding industrial and research accessibility of catalytic foams.</p
    corecore