4 research outputs found

    Exergetic and environmental life cycle assessments for waste cooking oil microemulsion biofuel in compression ignition engine

    No full text
    Biofuels are considered as the alternative to petrofuels in Compression Ignition (CI) engines. However, investigations on combustion exergy, exergetic life cycle, and environmental impacts are imperative for understanding the sustainability of biofuel in engine applications. In the present study, the sustainability of Waste Cooking Oil (WCO) microemulsion biofuel in CI engines is validated by evaluating the life cycle performances, emission characteristics, and cogeneration potential. The life cycle assessment (LCA) analysis indicated that the environmental impact of fossil resource exploitation could be reduced up to 34% with WCO microemulsion biofuel–petrodiesel blends (WMBDs) in comparison to petrodiesel. Moreover, CO, CO2, and NOx emissions decreased for WMBDs at different load conditions. In addition, WMBDs exhibited higher cylinder pressure and the highest net heat release rate (NHRRmax) than petrodiesel. WMBDs showed the net system exergy output, relative shares of brake power, and exhaust exergy comparable to petrodiesel, justifying the cogeneration potential of the formulated WCO microemulsion blends. In addition, WMBDs exhibited higher utilization efficiency over petrodiesel in exergetic life cycle assessment analysis. Furthermore, the resource utilization efficiency and environmental sustainability could be increased up to 27.76% and 26.62%, respectively, with waste heat recovery (cogeneration) facility for WMBDs. CI engines (both with and without integrated cogeneration facility) fueled with WMBDs outperformed petrodiesel in terms of environmental sustainability

    Valorization and Miscellaneous Prospects of Waste Musa balbisiana Colla Pseudostem

    Get PDF
    Resourceful utilization of the enormous quantum of agrowastes generated via agricultural practices can be supportive in waste management, environmental upgradation, and subsequent material and energy recovery. In this regard, the present study aimed at highlighting waste banana (Musa balbisiana Colla) pseudostem (an agrowaste) as a potential bio-based feedstock with miscellaneous applications. The pseudostem was characterized by carbon, nitrogen, and hydrogen (CHN) analysis, thermogravimetric-differential thermal analysis (TGDTA), and Fourier transform infrared (FTIR) spectroscopy. Cellulose, hemicellulose, and lignin were estimated as a part of biochemical characterization. Total phenolic content, total flavonoid content, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, and ferric reducing antioxidant power (FRAP) were carried out as a part of antioxidant characterization. The waste banana pseudostem biomass (WBPB) was also tried successfully as a natural filler in polyvinyl chloride (PVC) polymer composite. Thermal properties and water uptake test of the WBPB polymer composite were accessed as a part of composite characterization. The pseudostem had calorific value (15.22 MJ/kg), high holocellulose (58.67%), high free radical scavenging potential (69.9%), and a low ash content (6.8%). Additionally, the WBPB polymer composite showed improved water resistance and thermostability. The study suggests feasibility of WBPB as a prospective bioenergy feedstock, primary antioxidant source, and reinforcing agent in polymer composites
    corecore