38 research outputs found
Recommended from our members
Chitinase 3-Like 1 Promotes Macrophage Recruitment and Angiogenesis in Colorectal Cancer
Chitinase 3-like 1 (CHI3L1), one of mammalian members of the chitinase family, is expressed in several types of human cancer, and elevated serum level of CHI3L1 is suggested to be a biomarker of poor prognosis in advanced cancer patients. However, the overall biological function of CHI3L1 in human cancers still remains unknown. Studies were performed to characterize the role of CHI3L1 in cancer pathophysiology utilizing human colorectal cancer samples and human cell lines. Plasma protein and tissue mRNA expression levels of CHI3L1 in colorectal cancer were strongly upregulated. Immunohistochemical analysis showed that CHI3L1 was expressed in cancer cells and CHI3L1 expression had a significant association with the number of infiltrated macrophages and microvessel density. By utilizing trans-well migration and tube formation assays, overexpression of CHI3L1 in SW480 cells (human colon cancer cells) enhanced the migration of THP-1 cells (human macrophage cells) and HUVECs (human endothelial cells), and the tube formation of HUVECs. The knockdown of CHI3L1 by RNA interference or the neutralization of CHI3L1 by anti-CHI3L1 antibody displayed strong suppression of CHI3L1-induced migration and tube formation. Cell proliferation assay showed that CHI3L1 overexpression significantly enhanced the proliferation of SW480 cells. ELISA analysis showed that CHI3L1 increased the secretion of inflammatory chemokines, IL-8 and MCP-1, from SW480 cells through mitogen-activated protein kinase (MAPK) signaling pathway. Both neutralization of IL-8 or MCP-1 and inhibition or knockdown of MAPK in SW480 cells significantly inhibited CHI3L1-induced migration and tube formation. In a xenograft mouse model, overexpression of CHI3L1 in HCT116 cells (human colon cancer cells) enhanced the tumor growth as well as macrophage infiltration and microvessel density. In conclusion, CHI3L1 expressed in colon cancer cells promotes cancer cell proliferation, macrophage recruitment and angiogenesis. Thus, the inhibition of CHI3L1 activity may be a novel therapeutic strategy for human colorectal cancer
A unique B2 B cell subset in the intestine
Over 80% of the body's activated B cells are located in mucosal sites, including the intestine. The intestine contains IgM+ B cells, but these cells have not been characterized phenotypically or in terms of their developmental origins. We describe a previously unidentified and unique subset of immunoglobulin M+ B cells that present with an AA4.1−CD21−CD23− major histocompatibility complex class IIbright surface phenotype and are characterized by a low frequency of somatic hypermutation and the potential ability to produce interleukin-12p70. This B cell subset resides within the normal mucosa of the large intestine and expands in response to inflammation. Some of these intestinal B cells originate from the AA4.1+ immature B2 cell pool in the steady state and are also recruited from the recirculating naive B cell pool in the context of intestinal inflammation. They develop in an antigen-independent and BAFF-dependent manner in the absence of T cell help. Expansion of these cells can be induced in the absence of the spleen and gut-associated lymphoid tissues. These results describe the existence of an alternative pathway of B cell maturation in the periphery that gives rise to a tissue-specific B cell subset
Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity
大腸がん細胞の増殖運命の違いと薬剤感受性 --その柔軟性を決めるメカニズム--. 京都大学プレスリリース. 2023-01-20.Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
ダイチョウ ガン ニ オイテ STAT3 ノ カッセイカ ガ ベータ - カテニン ノ カクナイ シュウセキ ニ カンヨスル
京都大学0048新制・課程博士博士(医学)甲第12554号医博第3014号新制||医||931(附属図書館)UT51-2006-P14京都大学大学院医学研究科内科系専攻(主査)教授 坂井 義治, 教授 松田 道行, 教授 武藤 誠学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA
Successful outcome after laparoscopic surgery for sporadic colonic desmoid tumor with β-catenin mutation: a case report.
[Introduction]Desmoid tumors (also called aggressive fibromatosis) are histologically benign, but have a strong tendency to recur locally after resection. They are rare neoplastic tumors that may occur sporadically or in association with familial adenomatous polyposis caused by a germline mutation in the adenomatous polyposis coli gene. The etiology of desmoid tumors is unknown, but their association with a history of abdominal surgery, trauma, and estrogen therapy is well known. [Case presentation]A 36-year-old Asian woman was referred complaining of an abdominal tumor. She had no history of familial adenomatous polyposis, abdominal surgery, trauma or pregnancy. A laparoscopy-assisted right hemicolectomy with a minilaparotomy was conducted for resection of her right-side colon and the anterior wall of her duodenum. The histopathological diagnosis was a desmoid tumor that grew from the transverse mesocolon. Mutational analysis indicated a mutation of the β-catenin gene (CTNNB1), consisting of a substitution of threonine for alanine at codon 41. The patient has been followed postoperatively for more than 3 years without any sign of recurrence. [Conclusion]We report a case of sporadic colonic desmoid tumor which was resected by laparoscopic surgery. A successful outcome was achieved because there has been no local recurrence for more than 3 years. The tumor grew from the transverse mesocolon, and harbored a mutation of the CTNNB1gene. Mutational analysis of CTNNB1 gene may play an important role as a prognostic marker of desmoid tumors
A case report of brief psychotic disorder with catalepsy associated with sequential life-threatening events in a patient with advanced cancer
Abstract Background Cancer is commonly perceived as life-threatening and universally stressful; however, brief psychotic disorder, which occurs in response to extremely stressful events, has not been reported. Case presentation A 63-year-old woman, who was diagnosed as having pancreatic cancer with liver metastasis, became unresponsive with very little reaction to verbal contact after sequential life-threatening events, such as thrombosis of both pulmonary arteries and stenosis of the third portion of the duodenum, due to disease progression over 3 weeks beginning with oncological emergency hospital admission. Laboratory findings and electroencephalography were unremarkable. She maintained the position when the psycho-oncologist raised her hand (catalepsy). She had no medical history of psychiatric illness, or alcohol or drug abuse. From these findings, she was suspected of having a brief psychotic disorder with catalepsy and substupor, and 2.5 mg of haloperidol was administered. Her psychiatric symptoms disappeared in 4 days and the diagnosis of brief psychotic disorder was confirmed. Conclusions Brief psychotic disorders can manifest in patients with cancer. Careful clinical assessment is needed to correctly diagnose patients with cancer who develop brief psychotic disorders and to identify those who will benefit from correct treatment