3 research outputs found
Serendipitous One-Step Synthesis of Cyclopentene Derivatives from 5′-Deoxy-5′-Heteroarylsulfonylnucleosides as Nucleoside-Derived Julia–Kocienski Reagents
A serendipitous one-step transformation of 5′-deoxy-5′-heteroarylsulfonylnucleosides into cyclopentene derivatives is reported. This unique transformation likely proceeds via a domino reaction initiated by α-deprotonation of the heteroaryl sulfone and subsequent elimination reaction to generate a nucleobase and an α,β-unsaturated sulfone that contains a formyl group. The Michael addition of the nucleobase to the α,β-unsaturated sulfone and subsequent intramolecular Julia–Kocienski reaction eventually generate the cyclopentene ring. Heteroarylthio and acylthio groups can be incorporated into the cyclopentene core in place of the nucleobase by conducting this reaction in the presence of a heteroarylthiol and a thiocarboxylic acid, respectively. Cis,cis-trisubstituted cyclopentene derivatives are obtained as a single stereoisomer from ribonucleoside-derived Julia–Kocienski sulfones
Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults
The muscle strength of the knee extension and plantarflexion plays a crucial role in determining gait speed. Recent studies have shown that no-load angular velocity of the lower limb joints is essential for determining gait speed. However, no reports have compared the extent to which lower limb functions, such as knee extension strength, knee extension velocity, plantarflexion strength, and plantarflexion velocity, impact gait speed in a single study. Therefore, this study aimed to examine the relative importance of maximum strength and no-load angular velocity on gait speed. Overall, 164 community-dwelling older adults (72.9 ± 5.0 years) participated in this study. We measured the gait speed and lower limb function (the strength and velocity of knee extension and plantarflexion). Strength was measured with a hand-held dynamometer, and velocity with a gyroscope. A multiple regression analysis was performed with gait speed as the dependent variable and age, sex, and lower-limb function as independent variables. Plantarflexion velocity (β = 0.25) and plantarflexion strength (β = 0.21) were noted to be significant predictors of gait speed. These findings indicate that no-load plantarflexion velocity is more important than the strength of plantarflexion and knee extensions as a determinant of gait speed, suggesting that improvement in plantarflexion velocity may increase gait speed