11 research outputs found

    南極昭和基地及び北極ニーオルスンにおける雲の変動

    Get PDF
    第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 統計数理研究所 セミナー室2(D304

    Defining Hypo-Methylated Regions of Stem Cell-Specific Promoters in Human iPS Cells Derived from Extra-Embryonic Amnions and Lung Fibroblasts

    Get PDF
    BACKGROUND: Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived. Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of "stemness" remain unknown in iPS cells derived from extra-embryonic and embryonic cells. METHODOLOGY/PRINCIPAL FINDINGS: We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illumina's Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. CONCLUSIONS/SIGNIFICANCE: We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for "stemness" and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Peripheral VA-ECMO and pericardial drainage connected to the ECMO circuit for cardiac tamponade from blowout rupture: a case report

    No full text
    Abstract Background Left ventricular free wall rupture, particularly the blowout type, is still one of the most lethal complications of myocardial infarction and can cause catastrophic cardiac tamponade. Extracorporeal membrane oxygenation (ECMO) is often used to treat haemodynamic instability due to cardiac tamponade. However, elevated pericardial pressure can cause collapse of the right atrium, resulting in inadequate ECMO inflow and preventing the stabilisation of the circulation. Further, it can interfere with the venous return from the superior vena cava (SVC), increasing the intracranial pressure and reducing cerebral perfusion levels. Case presentation A 65-year-old man was hospitalised for out-of-hospital cardiac arrest. We used ECMO for cardiopulmonary resuscitation. After the establishment of ECMO, transthoracic echocardiography and left ventriculography revealed massive pericardial effusion. The treatment was supplemented with pericardial drainage since ECMO flow was frequently hampered by suction events. However, the blowout rupture led to the requirement of constant drainage from the pericardial catheter. To tend to this leak, we connected the venous cannula of ECMO and the pericardial drainage catheter. The surgery was performed with stable circulation without suction failure of ECMO. During the course of the intensive care management, the neurological prognosis of the patient was revealed to be poor, and the patient was shifted to palliative care. Unfortunately, the patient died on day 10 of hospitalisation. Conclusion We present a case wherein the combination of pericardial drainage and ECMO was used to maintain circulation in a patient with massive pericardial effusion due to cardiac rupture

    Glycosylceramides Purified from the Japanese Traditional Non-Pathogenic Fungus <i>Aspergillus</i> and <i>Koji</i> Increase the Expression of Genes Involved in Tight Junctions and Ceramide Delivery in Normal Human Epidermal Keratinocytes

    No full text
    Koji, which is used for manufacturing Japanese traditional fermented foods, has long been safely used as a cosmetic product. Although its cosmetic effect has been empirically established, the underlying mechanism has not been reported. We and other groups have previously elucidated that koji contains glycosylceramides, including N-2&#8242;-hydroxyoctadecanoyl-1-O-&#946;-d-glucosyl-9-methyl-4,8-sphingadienine and N-2&#8242;-hydroxyoctadecanoyl-1-O-&#946;-d-galactosyl-9-methyl-4,8-sphingadienine. This led us to hypothesise that koji exerts its cosmetic effect by acting on the keratinocytes through glycosylceramides on the gene level. Therefore, in this study, we investigated the effects of glycosylceramides from various sources on gene expression in normal human epidermal keratinocytes. The results revealed that glycosylceramides purified from white koji and the white koji-producing non-pathogenic fungus Aspergillus luchuensis and A. oryzae increased the expression of occludin (OCLN, an epidermal tight junction protein) and ATP-binding cassette sub-family A member 12 (ABCA12, a cellular membrane transporter), albeit the effect was modest relative to that of ceramides. Indeed, ceramide was increased in the keratinocytes upon koji lipid extract addition. These results indicate that glycosylceramides, which are the major sphingolipids of most natural materials, have an effect of increasing ABCA12 and OCLN expression, and suggest that koji exerts its cosmetic effect by increasing ceramide and tight junctions via glycosylceramides

    2020年度図書館現場演習報告 / <明石市立あかし市民図書館> / <飯田市立中央図書館> / <茨木市立中央図書館> / <宇治市中央図書館> / <オーテピア高知図書館> <大阪市立中央図書館> / <大阪府立男女共同参画・青少年センター情報ライブラリー> / <大阪府立中央図書館> / <大阪府立中之島図書館> / <京都市右京中央図書館> / <京都市中央図書館> / <京都市伏見中央図書館> / <京都府立京都学・歴彩館> / <京都府立図書館> / <熊本市立図書館> / <神戸市立中央図書館> / <国立国会図書館・東京本館> / <城陽市立図書館> / <高槻市立中央図書館> / <宝塚市立図書館> / <津島市立図書館> / <同志社高等学校図書館> / <同志社女子大学図書・情報センター> / <同志社女子中学校・高等学校図書・情報センター> / <同志社大学図書館> / <徳島市立図書館> / <豊中市立岡町図書館> / <奈良県立図書情報館> / <阪南市立図書館> / <枚方市立中央図書館> / <福知山市立図書館> / <野洲市立図書館> / <大和郡山市立図書館> / <八幡市立図書館>

    No full text
    corecore