74 research outputs found

    Pathogen transmission from vaccinated hosts can cause dose-dependent reduction in virulence

    Get PDF
    Many livestock and human vaccines are leaky because they block symptoms but do not prevent infection or onward transmission. This leakiness is concerning because it increases vaccination coverage required to prevent disease spread and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek disease virus (MDV) in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease

    A framework for future national pediatric pandemic respiratory disease severity triage: The HHS pediatric COVID-19 data challenge

    Get PDF
    Abstract Introduction: With persistent incidence, incomplete vaccination rates, confounding respiratory illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare resources effectively. While the overwhelming majority of pediatric infections are mild, there have been life-threatening exceptions that illuminated the need to proactively identify pediatric patients at risk of severe COVID-19 and other respiratory infectious diseases. However, a nationwide capability for developing validated computational tools to identify pediatric patients at risk using real-world data does not exist. Methods: HHS ASPR BARDA sought, through the power of competition in a challenge, to create computational models to address two clinically important questions using the National COVID Cohort Collaborative: (1) Of pediatric patients who test positive for COVID-19 in an outpatient setting, who are at risk for hospitalization? (2) Of pediatric patients who test positive for COVID-19 and are hospitalized, who are at risk for needing mechanical ventilation or cardiovascular interventions? Results: This challenge was the first, multi-agency, coordinated computational challenge carried out by the federal government as a response to a public health emergency. Fifty-five computational models were evaluated across both tasks and two winners and three honorable mentions were selected. Conclusion: This challenge serves as a framework for how the government, research communities, and large data repositories can be brought together to source solutions when resources are strapped during a pandemic

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Enantiomer-specific activities of an LRH-1 and SF-1 dual agonist

    Full text link
    Chirality is an important consideration in drug development: it can influence recognition of the intended target, pharmacokinetics, and off-target effects. Here, we investigate how chirality affects the activity and mechanism of action of RJW100, a racemic agonist of the nuclear receptors liver receptor homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1). LRH-1 and SF-1 modulators are highly sought as treatments for metabolic and neoplastic diseases, and RJW100 has one of the few scaffolds shown to activate them. However, enantiomer-specific effects on receptor activation are poorly understood. We show that the enantiomers have similar binding affinities, but RR-RJW100 stabilizes both receptors and is 46% more active than SS-RJW100 in LRH-1 luciferase reporter assays. We present an LRH-1 crystal structure that illuminates striking mechanistic differences: SS-RJW100 adopts multiple configurations in the pocket and fails to make an interaction critical for activation by RR-RJW100. In molecular dynamics simulations, SS-RJW100 attenuates intramolecular signalling important for coregulator recruitment, consistent with previous observations that it weakly recruits coregulators in vitro. These studies provide a rationale for pursuing enantiomerically pure RJW100 derivatives: they establish RR-RJW100 as the stronger LRH-1 agonist and identify a potential for optimizing the SS-RJW100 scaffold for antagonist design.This work was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant T32-GM008602 to SGM], National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grant F31-DK111171 to SGM, Grants R01-DK095750 and R01-DK114213 to EAO], the National Science Foundation [Grant DGE-1444932 to EHD], the American Heart Association [Grant 17POST33660110 to XL], and an Emory Catalyst Grant to EAO. RJW and JS thank GlaxoSmithKline for generous fundin

    Enantiomer-specific activities of an LRH-1 and SF-1 dual agonist

    Full text link
    Chirality is an important consideration in drug development: it can influence recognition of the intended target, pharmacokinetics, and off-target effects. Here, we investigate how chirality affects the activity and mechanism of action of RJW100, a racemic agonist of the nuclear receptors liver receptor homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1). LRH-1 and SF-1 modulators are highly sought as treatments for metabolic and neoplastic diseases, and RJW100 has one of the few scaffolds shown to activate them. However, enantiomer-specific effects on receptor activation are poorly understood. We show that the enantiomers have similar binding affinities, but RR-RJW100 stabilizes both receptors and is 46% more active than SS-RJW100 in LRH-1 luciferase reporter assays. We present an LRH-1 crystal structure that illuminates striking mechanistic differences: SS-RJW100 adopts multiple configurations in the pocket and fails to make an interaction critical for activation by RR-RJW100. In molecular dynamics simulations, SS-RJW100 attenuates intramolecular signalling important for coregulator recruitment, consistent with previous observations that it weakly recruits coregulators in vitro. These studies provide a rationale for pursuing enantiomerically pure RJW100 derivatives: they establish RR-RJW100 as the stronger LRH-1 agonist and identify a potential for optimizing the SS-RJW100 scaffold for antagonist design

    Data for "Pathogen transmission from vaccinated hosts can cause dose-dependent reduction in virulence"

    Full text link
    # Abstract # Many livestock and increasingly human vaccines are leaky, blocking symptoms without preventing infection or onward transmission. Leakiness is concerning as it increases vaccination coverage required to prevent disease spread, and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek’s disease virus in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms when these are present, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease.Dunn, John R; Cheng, Hans H; Doeschl-Wilson, Andrea; Bailey, Richard I; Chase-Topping, Margo; Mays, Jody; Anacleto, Osvaldo. (2019). Data for "Transmission from vaccinated hosts can cause dose-dependent reduction in pathogen virulence", [dataset]. University of Edinburgh. https://doi.org/10.7488/ds/2725
    • …
    corecore