32 research outputs found

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Authority, compliance and rebellion in second generation cultural minorities

    No full text
    This paper investigates the intersections of ethnicity, gender and sexuality by exploring the issues of parental, communal and societal authority, and the degrees of compliance and acceptance or resistance by the second generation. Using the responses of Southern Italian, Croatian, Slovenian, and Yugoslav second generation individuals in Australia, two questions are addressed: to what extent do migrant parents use sexual and marital control of their children as a means of maintaining ethnic cohesion; and to what extent does gender influence the level of parental control and the types of responses made by their children. The respondents were both heterosexual and lesbian female and heterosexual males. The data indicates a considerable level of parental and ethnic community direction and authority in relation to sexuality and marriage. It also indicates considerable levels of acceptance and higher levels of resistance to these codes by the second generation individuals. Finally, it appears that although the discussion is ethno-specific, the issues that arise such as power, identity and the body are wider societal concerns

    Actin Filaments and Microtubules are Involved in Different Membrane Traffic Pathways That Transport Sphingolipids to the Apical Surface of Polarized HepG2 Cells

    Get PDF
    In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements
    corecore