70 research outputs found

    Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the Li<sub>3</sub>OCl Antiperovskite Solid Electrolyte

    Get PDF
    Solid-state batteries are currently attracting increased attention because of their potential for significant improvements in energy density and safety as compared to liquid electrolyte-based batteries. Lithium-rich antiperovskites, such as Li3OCl, are of particular interest, but the effects of doping on lithium mobility are not fully understood at the atomic level. Here, we investigate the impact of divalent cation (Mg2+, Ca2+, Sr2+, and Ba2+) and F– doping on the ion conduction properties of Li3OCl, using both defect simulation and molecular dynamics techniques. Our results show that the F-doped system has a low conductivity and high activation barriers. This is attributable to high binding energies, which leads to the formation of stable dopant–vacancy pairs, preventing long-range lithium-ion mobility. In contrast to the F-doped system, Mg dopants (shown to be the most favorable dopant on the Li+ site) have lower binding energies to lithium vacancies, yielding higher lithium-ion conductivities and lower migration energies. Our results indicate a viable doping strategy to improve the electrochemical performance of antiperovskite solid electrolytes

    Structure-property relationships in metal-organic frameworks for hydrogen storage

    Get PDF
    Experimental hydrogen isotherms on several metal-organic frameworks (IRMOF-1, IRMOF-3, IRMOF-9, ZIF-7, ZIF-8, ZIF-9, ZIF-11, ZIF-12, ZIF-CoNIm, MIL-101 (Cr), NH2-MIL-101 (Cr), NH2-MIL-101 (Al), UiO-66, UiO-67 and HKUST-1) synthesized in-house and measured at 77 K and pressures up to 18 MPa are presented, along with N2 adsorption characterization. The experimental isotherms together with literature high pressure hydrogen data were analyzed in order to search for relationships between structural properties of the materials and their hydrogen uptakes. The total hydrogen capacity of the materials was calculated from the excess adsorption assuming a constant density for the adsorbed hydrogen. The surface area, pore volumes and pore sizes of the materials were related to their maximum hydrogen excess and total hydrogen capacities. Results also show that ZIF-7 and ZIF-9 (SOD topology) have unusual hydrogen isotherm shapes at relatively low pressures, which is indicative of "breathing", a phase transition in which the pore space increases due to adsorption. This work presents novel correlations using the modelled total hydrogen capacities of several MOFs. These capacities are more practically relevant for energy storage applications than the measured excess hydrogen capacities. Thus, these structural correlations will be advantageous for the prediction of the properties a MOF will need in order to meet the US Department of Energy targets for the mass and volume capacities of on-board storage systems. Such design tools will allow hydrogen to be used as an energy vector for sustainable mobile applications such as transport, or for providing supplementary power to the grid in times of high demand.</p

    Molecular simulation of hydrogen storage and transport in cellulose

    Get PDF
    In this work we describe a computational workflow to model the sorption and transport of molecular hydrogen in cellulose frameworks. The work demonstrates the value of the molecular dynamics code, DL_POLY and Monte Carlo code, DL_MONTE sharing common input formats to enhance the compatibility of the codes, being supported by DL_FIELD. Structures generated using cellulose-builder were processed by DL_FIELD to generate input files for DL_POLY using the OPLS_2005 force field. After relaxation in molecular dynamics, structures were used for GCMC simulations in DL_MONTE before passing back to DL_POLY to evaluate transport properties at different levels of sorption. While no hydrogen sorption was seen in pure crystalline cellulose, increasing separation between layers did allow sorption. When slit-pores were sufficiently wide, interactions with the cellulose led to the volumetric density of adsorbed hydrogen exceeding vacuum density at accessible partial pressures as well as allowing diffusion through the system. These model systems can give useful insight into the behaviour of amorphous cellulose in future simulation and experiment

    Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite

    Get PDF
    AbstractCs-chabazite, a type of zeolite with caesium counter-cations, possesses interesting gas separation properties due to a highly selective molecular “trapdoor” effect. Herein the use of this material for H2/D2 isotope separation is demonstrated. Isotope separation was achieved using breakthrough separation with a single pass through a packed bed at moderate temperatures (293K) and pressures (0.17MPa) when one species was in a sufficiently low concentration. The breakthrough separation curves were successfully modelled using the Thomas kinetic breakthrough model and the Yoon and Nelson kinetic breakthrough model, where working transferable kinetic rate constants were developed. Use of this material for hydrogen isotope separation would significantly lower the total energy demand compared with current hydrogen isotope separation techniques such as cryogenic distillation and is applicable to separating out low concentrations of D2 (0.0156%) present in standard grade H2

    Structure-property relationships in metal-organic frameworks for hydrogen storage

    Get PDF
    Experimental hydrogen isotherms on several metal-organic frameworks (IRMOF-1, IRMOF-3, IRMOF-9, ZIF-7, ZIF-8, ZIF-9, ZIF-11, ZIF-12, ZIF-CoNIm, MIL-101 (Cr), NH2-MIL-101 (Cr), NH2-MIL-101 (Al), UiO-66, UiO-67 and HKUST-1) synthesized in-house and measured at 77 K and pressures up to 18 MPa are presented, along with N2 adsorption characterization. The experimental isotherms together with literature high pressure hydrogen data were analysed in order to search for relationships between structural properties of the materials and their hydrogen uptakes. The total hydrogen capacity of the materials was calculated from the excess adsorption assuming a constant density for the adsorbed hydrogen. The surface area, pore volumes and pore sizes of the materials were related to their maximum hydrogen excess and total hydrogen capacities. Results also show that ZIF-7 and ZIF-9 (SOD topology) have unusual hydrogen isotherm shapes at relatively low pressures, which is indicative of “breathing”, a phase transition in which the pore space increases due to adsorption. This work presents novel and more useful correlations using the modelled total hydrogen capacities of several MOFs. These total hydrogen capacities are more practically relevant for energy storage applications than the measured excess hydrogen capacities. Thus, these structural correlations will be advantageous for the prediction of the properties a MOF will need in order to meet the US Department of Energy targets for the mass and volume of on-board storage systems. Such design tools will allow hydrogen to be used as an energy vector for sustainable mobile applications such as transport, or for providing supplementary power to the grid in times of high demand

    Freeze casting of porous monolithic composites for hydrogen storage

    Get PDF
    Hydrogen storage by adsorption offers operational benefits over energy intensive compression techniques. Incorporating physisorption materials in compression stores could improve hydrogen capacities, reducing the volume or pressure needed for storage vessels. However, such materials are often presented as fine powders and development efforts to date have predominantly focused on improving hydrogen uptake alone. Without due attention to industry-relevant attributes, such as handling, processability, and mechanical properties it is unlikely that these materials will find commercial application. In the paper, the desirable mechanical properties of hydrogen-adsorbent PIM-1 are exploited to yield a series of composite monoliths doped with a high surface area activated carbon, intended to act as pressure vessel inserts. Freeze casting techniques were successfully adapted for use with chloroform, facilitating the production of coherent and controlled three-dimensional geometries. This included the use of an innovative elastomeric mould made by additive manufacture to allow facile adoption, with the ability to vary multiple forming factors in the future. The composite monolith formed exhibited a stiffness of 0.26 GPa, a compressive strength of 6.7 MPa, and an increased BET surface area of 847 m2 g−1 compared to PIM-1 powders, signifying the first steps towards producing hydrogen adsorbents in truly useful monolithic forms

    High-pressure adsorptive storage of hydrogen in MIL-101 (Cr) and AX-21 for mobile applications:cryocharging and cryokinetics

    Get PDF
    Current state-of-the-art methods consist of containing highpressure compressed hydrogen in composite cylinders, with solid-state hydrogen storage materials an alternative that could improve on storage performance by enhancing volumetric densities. A new strategy that uses cryogenic temperatures to load hydrogen (cryocharging) is proposed and analysed in this work, comparing densities and final storage pressures for empty cylinders and containers with the high-surface area materials MIL-101 (Cr) and AX-21. Results show cryocharging as a viable option, as it can substantially lower the charging (at 77 K) and final pressures (at 298 K) for the majority of the cases considered. Kinetics are an equally important requirement for hydrogen storage systems, so the effective diffusivities at these conditions for both materials were calculated, and showed values comparable to the ones estimated in metal-organic frameworks and zeolites from quasielastic neutron scattering and molecular simulations. High-surface area materials tailored for hydrogen storage are a promising route for storage in mobile applications and results show that cryocharging is a promising strategy for hydrogen storage systems, since it increases volumetric densities and avoids energy penalties of operating at high pressures and/or low temperatures

    Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures

    Get PDF
    A sound understanding of any sorption system requires an accurate determination of the enthalpy of adsorption. This is a fundamental thermodynamic quantity that can be determined from experimental sorption data and its correct calculation is extremely important for heat management in adsorptive gas storage applications. It is especially relevant for hydrogen storage, where porous adsorptive storage is regarded as a competing alternative to more mature storage methods such as liquid hydrogen and compressed gas. Among the most common methods to calculate isosteric enthalpies in the literature are the virial equation and the Clausius-Clapeyron equation. Both methods have drawbacks, for example, the arbitrary number of terms in the virial equation and the assumption of ideal gas behaviour in the Clausius-Clapeyron equation. Although some researchers have calculated isosteric enthalpies of adsorption using excess amounts adsorbed, it is arguably more relevant to applications and may also be more thermodynamically consistent to use absolute amounts adsorbed, since the Gibbs excess is a partition, not a thermodynamic phase. In this paper the isosteric enthalpies of adsorption are calculated using the virial, Clausius-Clapeyron and Clapeyron equations from hydrogen sorption data for two materials-activated carbon AX-21 and metal-organic framework MIL-101. It is shown for these two example materials that the Clausius-Clapeyron equation can only be used at low coverage, since hydrogen's behaviour deviates from ideal at high pressures. The use of the virial equation for isosteric enthalpies is shown to require care, since it is highly dependent on selecting an appropriate number of parameters. A systematic study on the use of different parameters for the virial was performed and it was shown that, for the AX-21 case, the Clausius-Clapeyron seems to give better approximations to the exact isosteric enthalpies calculated using the Clapeyron equation than the virial equation with 10 variable parameters
    • 

    corecore