7 research outputs found

    РСализация POMDP-ΠΌΠΎΠ΄Π΅Π»ΠΈ Honeypot сильного взаимодСйствия Π² ΠΏΠ°ΠΊΠ΅Ρ‚Π΅ R

    No full text
    Markov decision process and its extensions are used to solve a variety of applied problems related to the problem of making an optimal decision, including under conditions of uncertainty. For example, a Partially Observable Markov Decision Process is used to solve robot navigation problems. Honeypot technology is an imitation of a real system, and is used to collect various types of information about attackers who compromise it. The framework described above can be applied to model a Honeypot system, which allows the system to solve the problem of determining its state and choosing the optimal action. This paper discusses a high interaction Honeypot model based on a Partially Observable Markov Decision Process, as well as the results of its implementation using the tools of the R package. Using the pomdp library, sets of states, actions, and observations have been described, as well as a transition function, a reward function, and an observation function. And also the optimal policy was found and analyzed for one set of system parameters.ΠœΠ°Ρ€ΠΊΠΎΠ²ΡΠΊΠΈΠΉ процСсс принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈ Π΅Π³ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, связанных с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ принятия ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π² Ρ‚ΠΎΠΌ числС Π² условиях нСопрСдСлённости. НапримСр, частично Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹ΠΉ ΠœΠ°Ρ€ΠΊΠΎΠ²ΡΠΊΠΈΠΉ процСсс принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ примСняСтся для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ². ВСхнология Honeypot прСдставляСт собой ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΡŽ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ систСмы, ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для сбора Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ Π·Π»ΠΎΡƒΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΈΠΊΠ°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΅Ρ‘ ΠΊΠΎΠΌΠΏΡ€ΠΎΠΌΠ΅Ρ‚ΠΈΡ€ΡƒΡŽΡ‚. ΠžΠΏΠΈΡΠ°Π½Π½Ρ‹ΠΉ Π²Ρ‹ΡˆΠ΅ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρ‘Π½ для модСлирования систСмы Honeypot, Ρ‡Ρ‚ΠΎ позволяСт систСмС Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ опрСдСлСния своСго состояния ΠΈ Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассматриваСтся модСль Honeypot сильного взаимодСйствия Π½Π° основС частично наблюдаСмого ΠœΠ°Ρ€ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ процСсса принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΅Ρ‘ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ срСдств ΠΏΠ°ΠΊΠ΅Ρ‚Π° R. Π‘ использованиСм Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ pomdp Π±Ρ‹Π»ΠΈ описаны состояния систСмы, мноТСства Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… дСйствий ΠΈ наблюдСний, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΌΠ΅ΠΆΠ΄Ρƒ состояниями, вознаграТдСния ΠΈ появлСния наблюдСний. А Ρ‚Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»Π° Π½Π°ΠΉΠ΄Π΅Π½Π° ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ° для ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы

    New chromophores based on combination of ethylenedioxythiophene and carbazole fragments: synthesis and optoelectronic properties

    No full text
    Two new D-Ο€-A chromophores composed of an electron-donating carbazole unit linked through Ο€- bridges, bearing 3,4-ethylenedioxythiophene (EDOT) moiety, with an electron withdrawing dicyanovinyl group (DCV) were successfully synthesized involving Suzuki or Heck cross-coupling and KnΓΆevenagel reactions as the key steps. The obtained compounds absorb light over a broad spectral range, including the visible spectrum. The HOMO/LUMO energies and band gap energy values (Eg) were calculated on the basis of the experimental optical and electrochemical data: HOMO, LUMO, Eg (eV), βˆ’5.51, βˆ’3.14, 2.37 (4), βˆ’5.34, βˆ’3.14, 2.20 (7). The presence of the HC=CH unit in compound 7 resulted in the increase of the HOMO energy level, the decrease of a band gap value and red shifts of the absorption and emission bands in comparison with those of 4. Large Stokes shifts and broadband luminescence inherent to both chromophores suggest their use as materials for luminescent solar collectors (LSCs). The obtained compounds demonstrated good solubility and suitable thin-film forming properties. For this reason, they may be suitable for solution-processable photovoltaic applications

    Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs

    No full text
    Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 ΞΌm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules. Β© 2019 American Chemical Society

    ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… процСссов ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19

    No full text
    Background. The pandemic of the new coronavirus infection has challenged the medical community for quickly finding and implementing effective methods of treatment. In the absence of a vaccine or specific therapy with proven effectiveness, the usage of convalescent plasma can be the one of perspective methods. An important aspect of this technology is the efficient and safe preparation of convalescent plasma. To date, in the world literature there are practically no publications about donor recruitment and the specifics of the preparation of convalescent plasma. Purpose of the research. Presentation of the experience of organizing a workflow for recruiting donors and stockpiling of convalescent plasma with a high titer of virus-neutralizing antibodies to SARS-CoV-2. Methods. The analysis of the work of the Blood Service of the Moscow Department of Health for stockpiling of COVID-19 convalescent plasma has been executed. In total it has been stockpiled 1240 doses. The normative documentation has been developed by a working group on the basis of the current federal legislation of Russian federation and been approved by the Moscow Department of Health. The titer of neutralizing antibodies (VNA) has been determined as the basic method for assessing the immunological viability of convalescent plasma. The main characteristics of donors, the characteristics of the disease course, the results of preliminary testing for the presence of specific antibodies by ELISA and CLIA methods has been compared with VNA titers in the stockpiled convalescent plasma. Results. Due to a Moscow Health Departments order No. 325 dated 01.04.2020 (a basic local regulatory document) it has been developed a regulation for the stockpiling, examination, storage, safety and transfering of fresh frozen pathogen-reduced plasma of COVID-19 convalescent donors to medical organizations of the Moscow Health Department. For arranging an interaction with donors it has been created a call-center. For effective preliminary selection, it has been formed a donor characteristics list, which has been combined with screening of specific antibodies by ELISA and CLIA methods. Conclusions. Developed a system of recruiting donors and procurement process of convalescent plasma for treatment Π‘OVID-19, which includes the necessary regulations, algorithms for the selection and recruitment of donors, the registry of donors and recipients, algorithms, efficiency and safety of convalescent plasma.ОбоснованиС. ПандСмия Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ поставила ΠΏΠ΅Ρ€Π΅Π΄ мСдицинским сообщСством Π·Π°Π΄Π°Ρ‡Ρƒ быстрого поиска ΠΈ внСдрСния эффСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ лСчСния. Π’ условиях отсутствия Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΈ срСдств спСцифичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² качСствС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· пСрспСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ рассматриваСтся трансфузия рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ (РП). Π’Π°ΠΆΠ½Ρ‹ΠΌ аспСктом Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ являСтся Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° эффСктивного ΠΈ бСзопасного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. На сСгодняшний дСнь ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ особСнностях Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ практичСски ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. ЦСль исслСдования Анализ ΠΎΠΏΡ‹Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ процСсса ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП с высоким Ρ‚ΠΈΡ‚Ρ€ΠΎΠΌ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ SARS-CoV-2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π‘Π»ΡƒΠΆΠ±Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° здравоохранСния Π³. ΠœΠΎΡΠΊΠ²Ρ‹ (Π”Π—Πœ) ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП COVID-19. ВсСго Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ 1240 Π΄ΠΎΠ·. Нормативная докумСнтация Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π½Π° основании Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π”Π—Πœ. Как базовая ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ иммунологичСской ΡΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ РП, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρ‚ΠΈΡ‚Ρ€ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» (ВНА). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сопоставлСниС основных характСристик Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², особСнностСй тСчСния заболСвания, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСстирования Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА с Ρ‚ΠΈΡ‚Ρ€Π°ΠΌΠΈ ВНА Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ РП. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π±ΠΎΡ‚Π° ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅, обслСдованию, Ρ…Ρ€Π°Π½Π΅Π½ΠΈΡŽ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ бСзопасности ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ Π² мСдицинскиС ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠœΠ— свСТСзамороТСнной ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-рСконвалСсцСнтов COVID-19 Π±Ρ‹Π»Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π° Π½Π° основании ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π”Π—Πœ ΠΎΡ‚ 01.04.2020 β„– 325 ΠΊΠ°ΠΊ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ локального Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°. Для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ с ΡΠΎΡΡ‚ΠΎΡΠ²ΡˆΠΈΠΌΠΈΡΡ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ ΠΈ привлСчСния рСконвалСсцСнтов использовались рСсурсы ΠΊΠΎΠ»Π»-Ρ†Π΅Π½Ρ‚Ρ€Π°. Для эффСктивного ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π±ΠΎΡ€Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ Π°Π½Π°Π»ΠΈΠ· характСристик Π΄ΠΎΠ½ΠΎΡ€Π° (ΠΏΠ»Π°Π·ΠΌΠ° с наибольшими значСниями Ρ‚ΠΈΡ‚Ρ€Π° ВНА ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠ° ΠΎΡ‚ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-ΠΌΡƒΠΆΡ‡ΠΈΠ½, ΠΏΠ΅Ρ€Π΅Π±ΠΎΠ»Π΅Π²ΡˆΠΈΡ… с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ явной вирусной ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ) ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ скрининга спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° систСма обСспСчСния Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ процСсса Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП для лСчСния Π‘OVID-19, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΎΡ‚Π±ΠΎΡ€Π° ΠΈ привлСчСния Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², рССстр Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ², Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ обСспСчСния эффСктивности ΠΈ бСзопасности РП

    Modern Trends of Organic Chemistry in Russian Universities

    No full text
    corecore