1,662 research outputs found

    Separation and fractionation of order and disorder in highly polydisperse systems

    Get PDF
    Microcanonical Monte Carlo simulations of a polydisperse soft-spheres model for liquids and colloids have been performed for very large polydispersity, in the region where a phase-separation is known to occur when the system (or part of it) solidifies. By studying samples of different sizes, from N=256 to N=864, we focus on the nature of the two distinct coexisting phases. Measurements of crystalline order in particles of different size reveal that the solid phase segregates between a crystalline solid with cubic symmetry and a disordered phase. This phenomenon is termed fractionation.Comment: 8 pages, 5 figure

    The CORALIE survey for southern extra-solar planets IX. A 1.3-day period brown dwarf disguised as a planet

    Full text link
    In this article we present the case of HD 41004 AB, a system composed of a K0V star and a 3.7-magnitude fainter M-dwarf companion separated by only 0.5 arcsec. An analysis of CORALIE radial-velocity measurements has revealed a variation with an amplitude of about 50m/s and a periodicity of 1.3days. This radial-velocity signal is consistent with the expected variation induced by the presence a very low mass giant planetary companion to HD 41004 A, whose light dominates the spectra. The radial-velocity measurements were then complemented with a photometric campaign and with the analysis of the bisector of the CORALIE Cross-Correlation Function (CCF). While the former revealed no significant variations within the observational precision of 0.003-0.004 mag (except for an observed flare event), the bisector analysis showed that the line profiles are varying in phase with the radial-velocity. This latter result, complemented with a series of simulations, has shown that we can explain the observations by considering that HD 41004 B has a brown-dwarf companion orbiting with the observed 1.3-day period. If confirmed, this detection represents the first discovery of a brown dwarf in a very short period (1.3-day) orbit around an M dwarf. Finally, this case should be taken as a serious warning about the importance of analyzing the bisector when looking for planets using radial-velocity techniques.Comment: 16 pages, 17 eps figures, A&A in press (Figure 11 not as in original version due to size

    Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

    Get PDF
    Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three-dimensional Edwards-Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behavior of our data is nicely described by straightforward finite-size scaling relations.Comment: 23 pages, 9 figures. Version accepted for publication in J. Stat. Mec

    Mid-infrared laser light nulling experiment using single-mode conductive waveguides

    Full text link
    Aims: In the context of space interferometry missions devoted to the search of exo-Earths, this paper investigates the capabilities of new single mode conductive waveguides at providing modal filtering in an infrared and monochromatic nulling experiment; Methods: A Michelson laser interferometer with a co-axial beam combination scheme at 10.6 microns is used. After introducing a Pi phase shift using a translating mirror, dynamic and static measurements of the nulling ratio are performed in the two cases where modal filtering is implemented and suppressed. No additional active control of the wavefront errors is involved. Results: We achieve on average a statistical nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null of 5.6e-5 is obtained in static mode. At the moment, the impact of external vibrations limits our ability to maintain the null to 10 to 20 seconds.; Conclusions: A positive effect of SM conductive waveguide on modal filtering has been observed in this study. Further improvement of the null should be possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure

    Phase diagram of the (bosonic) Double-Exchange Model

    Get PDF
    The phase diagram of the simplest approximation to Double-Exchange systems, the bosonic Double-Exchange model with antiferromagnetic super-exchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions and Variational Mean-Field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segment like ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase-transition, only short-range ordering would be found in neutron-scattering. Researchers looking for a Quantum Critical Point in manganites should be wary of this possibility. Finite-Size Scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.Comment: 17 pages, 14 figure

    Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15: II. Kinematical Analysis and Dynamical Modeling

    Full text link
    We analyze HST/STIS spectra (see Paper I) of the central region of the dense globular cluster M15. We infer the velocities of 64 individual stars, two-thirds of which have their velocity measured for the first time. This triples the number of stars with measured velocities in the central 1 arcsec of M15 and doubles the number in the central 2 arcsec. Combined with existing ground-based data we obtain the radial profiles of the projected kinematical quantities. The RMS velocity sigma_RMS rises to 14 km/s in the central few arcsec, somewhat higher than the values of 10-12 km/s inferred previously from ground-based data. To interpret the results we construct dynamical models based on the Jeans equation, which imply that M15 must have a central concentration of non-luminous material. If this is due to a single black hole, then its mass is M_BH = (3.9 +/- 2.2) x 10^3 solar masses. This is consistent with the relation between M_BH and sigma_RMS that has been established for galaxies. Also, the existence of intermediate-mass black holes in globular clusters is consistent with several scenarios for globular cluster evolution proposed in the literature. Therefore, these results may have important implications for our understanding of the evolution of globular clusters, the growth of black holes, the connection between globular cluster and galaxy formation, and the nature of the recently discovered `ultra-luminous' X-ray sources in nearby galaxies. Instead of a single black hole, M15 could have a central concentration of dark remnants (e.g., neutron stars) due to mass segregation. However, the best-fitting Fokker-Planck models that have previously been constructed for M15 do not predict a central mass concentration that is sufficient to explain the observed kinematics.[ABRIDGED]Comment: 43 pages, LaTeX, with 14 PostScript figures. Astronomical Journal, in press (Dec 2002). Please note that the results reported here are modified by the Addendum available at astro-ph/0210158 (Astronomical Journal, in press, Jan 2003). This second version submitted to astro-ph is identical to first, with the exception of the preceeding remar

    Space Velocities of L- and T-type Dwarfs

    Get PDF
    (Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincident with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.Comment: Accepted for publication in Ap

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Calcium II Triplet Spectroscopy of LMC Red Giants. I. Abundances and Velocities for a Sample of Populous Clusters

    Get PDF
    Abridged Abstract - Utilizing the FORS2 instrument on the VLT, we have obtained near infrared spectra for more than 200 stars in 28 populous LMC clusters. This cluster sample spans a large range of ages (~ 1-13 Gyr) and metallicities (-0.3 > [Fe/H] > -2.0) and has good areal coverage of the LMC disk. The strong absorption lines of the Calcium II triplet are used to derive cluster radial velocities and abundances. We determine mean cluster velocities to typically 1.6 km/s and mean metallicities to 0.04 dex (random error). For eight of these clusters, we report the first spectroscopically determined metallicities based on individual cluster stars, and six of these eight have no published radial velocity measurements. (continued in paper)Comment: 26 pages of text plus 14 figures and 6 tables. Accepted for publication in AJ. Scheduled for Vol. 132, No. 4 (October 2006
    • 

    corecore