61 research outputs found

    Avoiding symmetry roadblocks and minimizing the measurement overhead of adaptive variational quantum eigensolvers

    Full text link
    Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for this purpose consists of variational quantum eigensolvers (VQEs). Among these, problem-tailored versions such as ADAPT-VQE that build variational ans\"atze step by step from a predefined operator pool perform particularly well in terms of circuit depths and variational parameter counts. However, this improved performance comes at the expense of an additional measurement overhead compared to standard VQEs. Here, we show that this overhead can be reduced to an amount that grows only linearly with the number nn of qubits, instead of quartically as in the original ADAPT-VQE. We do this by proving that operator pools of size 2n−22n-2 can represent any state in Hilbert space if chosen appropriately. We prove that this is the minimal size of such "complete" pools, discuss their algebraic properties, and present necessary and sufficient conditions for their completeness that allow us to find such pools efficiently. We further show that, if the simulated problem possesses symmetries, then complete pools can fail to yield convergent results, unless the pool is chosen to obey certain symmetry rules. We demonstrate the performance of such symmetry-adapted complete pools by using them in classical simulations of ADAPT-VQE for several strongly correlated molecules. Our findings are relevant for any VQE that uses an ansatz based on Pauli strings.Comment: 15+10 pages, 7 figure

    TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit ans\"atze

    Full text link
    Adaptive quantum variational algorithms are particularly promising for simulating strongly correlated systems on near-term quantum hardware, but they are not yet viable due, in large part, to the severe coherence time limitations on current devices. In this work, we introduce an algorithm called TETRIS-ADAPT-VQE, which iteratively builds up variational ans\"atze a few operators at a time in a way dictated by the problem being simulated. This algorithm is a modified version of the ADAPT-VQE algorithm in which the one-operator-at-a-time rule is lifted to allow for the addition of multiple operators with disjoint supports in each iteration. TETRIS-ADAPT-VQE results in denser but significantly shallower circuits, without increasing the number of CNOT gates or variational parameters. Its advantage over the original algorithm in terms of circuit depths increases with the system size. Moreover, the expensive step of measuring the energy gradient with respect to each candidate unitary at each iteration is performed only a fraction of the time compared to ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.Comment: 10 pages, 7 figure

    An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer

    Full text link
    The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the original QAOA ansatz is not optimal, there is no systematic approach for finding better ans\"atze. We address this problem by developing an iterative version of QAOA that is problem-tailored, and which can also be adapted to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the original QAOA, while simultaneously reducing the required number of CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of shortcuts to adiabaticity.Comment: 5 pages, 3 figure
    • …
    corecore