3,453 research outputs found

    Translocation and insertion of precursor proteins into isolated outer membranes of mitochondria

    Get PDF
    Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane

    New and revised parameters for several southern OB binaries

    Full text link
    Using ESO FEROS archive spectra of several southern OB-type binaries, we derived periods for three SB2 spectroscopic binaries, HD 97166, HD 115455, and HD 123590, and two SB1 systems, HD 130298 and HD 163892. It was also possible to use new FEROS spectra to improve the parameters of the known binaries, KX Vel and HD 167263. For KX Vel, we determined a dynamic mass of the primary of 16.8 M_{\odot}, while the evolutionary model suggests a higher value of 20.2 M_{\odot}. We derived an improved period for HD 167263, and in its spectra, we recognized contributions of both of its interferometric components.Comment: 9 pages, A&A accepte

    Insights into the mRNA transcription cycle from genome-wide occupancy profiling

    Get PDF

    How a well-adapting immune system remembers

    Full text link
    An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a mid-life plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors

    Unbiased estimation of sampling variance for Simpson's diversity index

    Full text link
    Quantification of measurement uncertainty is crucial for robust scientific inference, yet accurate estimates of this uncertainty remain elusive for ecological measures of diversity. Here, we address this longstanding challenge by deriving a closed-form unbiased estimator for the sampling variance of Simpson's diversity index. In numerical tests the estimator consistently outperforms existing approaches, particularly for applications in which species richness exceeds sample size. We apply the estimator to quantify biodiversity loss in marine ecosystems and to demonstrate ligand-dependent contributions of T cell receptor chains to specificity, illustrating its versatility across fields. The novel estimator provides researchers with a reliable method for comparing diversity between samples, essential for quantifying biodiversity trends and making informed conservation decisions.Comment: updated manuscript with 11 pages, 9 figure
    corecore