34 research outputs found
SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase
Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling pathways, including nicotinamide adenine dinucleotide (NA
SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy
Trehalose is a disaccharide demonstrated to mitigate disease burden in multiple murine neurodegenerative models. We recently revealed that trehalose rapidly induces hepatic autophagy and abrogates hepatic steatosis by inhibiting hexose transport via the SLC2A family of facilitative transporters. Prior studies, however, postulate that intracellular trehalose is sufficient to induce cellular autophagy. The objective of the current study was to identify the means by which trehalose accesses the hepatocyte cytoplasm, and define the distal signaling mechanisms by which trehalose induces autophagy. We provide gas chromatographic/mass spectrometric, fluorescence microscopic and radiolabeled uptake evidence that trehalose traverses the plasma membrane via SLC2A8 (GLUT8), a homolog of the trehalose transporter-1 (Tret1). Moreover, GLUT8-deficient hepatocytes and GLUT8-deficient mice exposed to trehalose resisted trehalose-induced AMP-activated protein kinase (AMPK) phosphorylation and autophagic induction in vitro and in vivo. Although trehalose profoundly attenuated mTORC1 signaling, trehalose-induced mTORC1 suppression was insufficient to activate autophagy in the absence of AMPK or GLUT8. Strikingly, transient, heterologous Tret1 overexpression reconstituted autophagic flux and AMPK signaling defects in GLUT8-deficient hepatocyte cultures. Together, these data suggest that cytoplasmic trehalose access is carrier-mediated, and that GLUT8 is a mammalian trehalose transporter required for hepatocyte trehalose-induced autophagy and signal transduction
Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia
Checkpoint-Dependent and -Independent Roles of Swi3 in Replication Fork Recovery and Sister Chromatid Cohesion in Fission Yeast
Multiple genome maintenance processes are coordinated at the replication fork to preserve genomic integrity. How eukaryotic cells accomplish such a coordination is unknown. Swi1 and Swi3 form the replication fork protection complex and are involved in various processes including stabilization of replication forks, activation of the Cds1 checkpoint kinase and establishment of sister chromatid cohesion in fission yeast. However, the mechanisms by which the Swi1βSwi3 complex achieves and coordinates these tasks are not well understood. Here, we describe the identification of separation-of-function mutants of Swi3, aimed at dissecting the molecular pathways that require Swi1βSwi3. Unlike swi3 deletion mutants, the separation-of-function mutants were not sensitive to agents that stall replication forks. However, they were highly sensitive to camptothecin that induces replication fork breakage. In addition, these mutants were defective in replication fork regeneration and sister chromatid cohesion. Interestingly, unlike swi3-deleted cell, the separation-of-functions mutants were proficient in the activation of the replication checkpoint, but their fork regeneration defects were more severe than those of checkpoint mutants including cds1Ξ, chk1Ξ and rad3Ξ. These results suggest that, while Swi3 mediates full activation of the replication checkpoint in response to stalled replication forks, Swi3 activates a checkpoint-independent pathway to facilitate recovery of collapsed replication forks and the establishment of sister chromatid cohesion. Thus, our separation-of-function alleles provide new insight into understanding the multiple roles of Swi1-Swi3 in fork protection during DNA replication, and into understanding how replication forks are maintained in response to different genotoxic agents
Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting
Fasting is known for its beneficial effects on obesity and diabetes-related health complications. Here Zhang et al. show that fasting induces expression of arginase-2 (Arg2) in the liver, and that hepatic Arg2, by suppressing the expression of the regulator of G-protein signalling 16, recapitulates the positive effects of fasting in obesity and diabetes
TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose
<p>The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis <i>in vivo</i>, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation <i>in vivo</i>. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated <i>ob/ob, Becn1, Atg16l1</i>, and <i>Epg5</i> mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.</p